Fixed bug in Quaternion that didn't allow for operator/ with a const-qualified operand b

This commit is contained in:
Leonetienne 2022-02-11 14:48:13 +01:00
parent b8b3005cb2
commit f2519fd085
2 changed files with 320 additions and 322 deletions

View File

@ -10,328 +10,326 @@
#include "gcccompat.h"
#endif
using namespace Eule;
namespace Eule {
Quaternion::Quaternion()
{
v = Vector4d(0, 0, 0, 1);
return;
}
Quaternion::Quaternion(const Vector4d values)
{
v = values;
return;
}
Quaternion::Quaternion(const Quaternion& q)
{
v = q.v;
return;
}
Quaternion::Quaternion(const Vector3d eulerAngles)
{
Vector3d eulerRad = eulerAngles * Deg2Rad;
#ifndef _EULE_NO_INTRINSICS_
// Calculate sine and cos values
__m256d __vec = _mm256_set_pd(0, eulerRad.z, eulerRad.y, eulerRad.x);
__vec = _mm256_mul_pd(__vec, _mm256_set1_pd(0.5));
__m256d __cos;
__m256d __sin = _mm256_sincos_pd(&__cos, __vec);
// Create multiplication vectors
double sin[4];
double cos[4];
_mm256_storeu_pd(sin, __sin);
_mm256_storeu_pd(cos, __cos);
__m256d __a = _mm256_set_pd(cos[0], cos[0], sin[0], cos[0]);
__m256d __b = _mm256_set_pd(cos[1], sin[1], cos[1], cos[1]);
__m256d __c = _mm256_set_pd(sin[2], cos[2], cos[2], cos[2]);
__m256d __d = _mm256_set_pd(sin[0], sin[0], cos[0], sin[0]);
__m256d __e = _mm256_set_pd(sin[1], cos[1], sin[1], sin[1]);
__m256d __f = _mm256_set_pd(cos[2], sin[2], sin[2], sin[2]);
// Multiply them
__m256d __abc;
__abc = _mm256_mul_pd(__a, __b);
__abc = _mm256_mul_pd(__abc, __c);
__m256d __def;
__def = _mm256_mul_pd(__d, __e);
__def = _mm256_mul_pd(__def, __f);
// Extract results
double abc[4];
double def[4];
_mm256_storeu_pd(abc, __abc);
_mm256_storeu_pd(def, __def);
// Sum them up
v.w = abc[0] + def[0];
v.x = abc[1] - def[1];
v.y = abc[2] + def[2];
v.z = abc[3] - def[3];
#else
const double cy = cos(eulerRad.z * 0.5);
const double sy = sin(eulerRad.z * 0.5);
const double cp = cos(eulerRad.y * 0.5);
const double sp = sin(eulerRad.y * 0.5);
const double cr = cos(eulerRad.x * 0.5);
const double sr = sin(eulerRad.x * 0.5);
v.w = cr * cp * cy + sr * sp * sy;
v.x = sr * cp * cy - cr * sp * sy;
v.y = cr * sp * cy + sr * cp * sy;
v.z = cr * cp * sy - sr * sp * cy;
#endif
return;
}
Quaternion::~Quaternion()
{
return;
}
Quaternion Quaternion::operator= (const Quaternion& q)
{
InvalidateCache();
v = q.v;
return (*this);
}
Quaternion Quaternion::operator* (const Quaternion& q) const
{
return Quaternion(Vector4d(
v.w * q.v.x + v.x * q.v.w + v.y * q.v.z - v.z * q.v.y,
v.w * q.v.y + v.y * q.v.w + v.z * q.v.x - v.x * q.v.z,
v.w * q.v.z + v.z * q.v.w + v.x * q.v.y - v.y * q.v.x,
v.w * q.v.w - v.x * q.v.x - v.y * q.v.y - v.z * q.v.z
));
}
Quaternion Quaternion::operator*(const double scale) const
{
return Quaternion(v * scale);
}
Quaternion Quaternion::operator/ (const Quaternion& q) const
{
return ((*this) * (q.Inverse()));
}
Quaternion& Quaternion::operator*= (const Quaternion& q)
{
InvalidateCache();
Vector4d bufr = v;
v.x = bufr.w * q.v.x + bufr.x * q.v.w + bufr.y * q.v.z - bufr.z * q.v.y; // x
v.y = bufr.w * q.v.y + bufr.y * q.v.w + bufr.z * q.v.x - bufr.x * q.v.z; // y
v.z = bufr.w * q.v.z + bufr.z * q.v.w + bufr.x * q.v.y - bufr.y * q.v.x; // z
v.w = bufr.w * q.v.w - bufr.x * q.v.x - bufr.y * q.v.y - bufr.z * q.v.z; // w
return (*this);
}
Quaternion& Quaternion::operator*=(const double scale)
{
InvalidateCache();
v *= scale;
return (*this);
}
Quaternion& Quaternion::operator/= (const Quaternion& q)
{
InvalidateCache();
(*this) = (*this) * q.Inverse();
return (*this);
}
Vector3d Quaternion::operator*(const Vector3d& p) const
{
return RotateVector(p);
}
bool Quaternion::operator== (const Quaternion& q) const
{
return (v.Similar(q.v)) || (v.Similar(q.v * -1));
}
bool Quaternion::operator!= (const Quaternion& q) const
{
return (!v.Similar(q.v)) && (!v.Similar(q.v * -1));
}
Quaternion Quaternion::Inverse() const
{
const std::lock_guard<std::mutex> lock(lock_inverseCache);
if (!isCacheUpToDate_inverse)
{
cache_inverse = (Conjugate() * (1.0 / v.SqrMagnitude())).v;
isCacheUpToDate_inverse = true;
}
return Quaternion(cache_inverse);
}
Quaternion Quaternion::Conjugate() const
{
return Quaternion(Vector4d(-v.x, -v.y, -v.z, v.w));
}
Quaternion Quaternion::UnitQuaternion() const
{
return (*this) * (1.0 / v.Magnitude());
}
Vector3d Quaternion::RotateVector(const Vector3d& vec) const
{
Quaternion pure(Vector4d(vec.x, vec.y, vec.z, 0));
//Quaternion f = Conjugate() * pure * (*this);
//Quaternion f = Inverse().Conjugate() * pure * (this->Inverse());
Quaternion f = Inverse() * pure * (*this);
Vector3d toRet;
toRet.x = f.v.x;
toRet.y = f.v.y;
toRet.z = f.v.z;
return toRet;
}
Vector3d Quaternion::ToEulerAngles() const
{
const std::lock_guard<std::mutex> lock(lock_eulerCache);
if (!isCacheUpToDate_euler)
{
Vector3d euler;
// roll (x-axis rotation)
double sinr_cosp = 2.0 * (v.w * v.x + v.y * v.z);
double cosr_cosp = 1.0 - 2.0 * (v.x * v.x + v.y * v.y);
euler.x = std::atan2(sinr_cosp, cosr_cosp);
// pitch (y-axis rotation)
double sinp = 2.0 * (v.w * v.y - v.z * v.x);
if (std::abs(sinp) >= 1)
euler.y = std::copysign(PI / 2, sinp); // use 90 degrees if out of range
else
euler.y = std::asin(sinp);
// yaw (z-axis rotation)
double siny_cosp = 2.0 * (v.w * v.z + v.x * v.y);
double cosy_cosp = 1.0 - 2.0 * (v.y * v.y + v.z * v.z);
euler.z = std::atan2(siny_cosp, cosy_cosp);
euler *= Rad2Deg;
cache_euler = euler;
isCacheUpToDate_matrix = true;
}
return cache_euler;
}
Matrix4x4 Quaternion::ToRotationMatrix() const
{
const std::lock_guard<std::mutex> lock(lock_matrixCache);
if (!isCacheUpToDate_matrix)
{
Matrix4x4 m;
const double sqx = v.x * v.x;
const double sqy = v.y * v.y;
const double sqz = v.z * v.z;
const double sqw = v.w * v.w;
const double x = v.x;
const double y = v.y;
const double z = v.z;
const double w = v.w;
// invs (inverse square length) is only required if quaternion is not already normalised
double invs = 1.0 / (sqx + sqy + sqz + sqw);
// since sqw + sqx + sqy + sqz =1/invs*invs
// yaw (y)
m.c = ((2 * x * z) - (2 * w * y)) * invs;
m.f = (1 - (2 * sqx) - (2 * sqz)) * invs;
m.i = ((2 * x * z) + (2 * w * y)) * invs;
// pitch (x)
m.a = (1 - (2 * sqy) - (2 * sqz)) * invs;
m.g = ((2 * y * z) + (2 * w * x)) * invs;
m.j = ((2 * y * z) - (2 * w * x)) * invs;
// roll (z)
m.b = ((2 * x * v.y) + (2 * w * z)) * invs;
m.e = ((2 * x * v.y) - (2 * w * z)) * invs;
m.k = (1 - (2 * sqx) - (2 * sqy)) * invs;
m.p = 1;
cache_matrix = m;
isCacheUpToDate_matrix = true;
}
return cache_matrix;
}
Vector4d Quaternion::GetRawValues() const
{
return v;
}
Quaternion Quaternion::AngleBetween(const Quaternion& other) const
{
return other * Conjugate();
}
void Quaternion::SetRawValues(const Vector4d values)
{
InvalidateCache();
v = values;
return;
}
Quaternion Quaternion::Lerp(const Quaternion& other, double t) const
{
return Quaternion(v.Lerp(other.v, t)).UnitQuaternion();
}
void Quaternion::InvalidateCache()
{
isCacheUpToDate_euler = false;
isCacheUpToDate_matrix = false;
isCacheUpToDate_inverse = false;
return;
}
Quaternion::Quaternion()
{
v = Vector4d(0, 0, 0, 1);
return;
}
Quaternion::Quaternion(const Vector4d values)
{
v = values;
return;
}
Quaternion::Quaternion(const Quaternion& q)
{
v = q.v;
return;
}
Quaternion::Quaternion(const Vector3d eulerAngles)
{
Vector3d eulerRad = eulerAngles * Deg2Rad;
#ifndef _EULE_NO_INTRINSICS_
// Calculate sine and cos values
__m256d __vec = _mm256_set_pd(0, eulerRad.z, eulerRad.y, eulerRad.x);
__vec = _mm256_mul_pd(__vec, _mm256_set1_pd(0.5));
__m256d __cos;
__m256d __sin = _mm256_sincos_pd(&__cos, __vec);
// Create multiplication vectors
double sin[4];
double cos[4];
_mm256_storeu_pd(sin, __sin);
_mm256_storeu_pd(cos, __cos);
__m256d __a = _mm256_set_pd(cos[0], cos[0], sin[0], cos[0]);
__m256d __b = _mm256_set_pd(cos[1], sin[1], cos[1], cos[1]);
__m256d __c = _mm256_set_pd(sin[2], cos[2], cos[2], cos[2]);
__m256d __d = _mm256_set_pd(sin[0], sin[0], cos[0], sin[0]);
__m256d __e = _mm256_set_pd(sin[1], cos[1], sin[1], sin[1]);
__m256d __f = _mm256_set_pd(cos[2], sin[2], sin[2], sin[2]);
// Multiply them
__m256d __abc;
__abc = _mm256_mul_pd(__a, __b);
__abc = _mm256_mul_pd(__abc, __c);
__m256d __def;
__def = _mm256_mul_pd(__d, __e);
__def = _mm256_mul_pd(__def, __f);
// Extract results
double abc[4];
double def[4];
_mm256_storeu_pd(abc, __abc);
_mm256_storeu_pd(def, __def);
// Sum them up
v.w = abc[0] + def[0];
v.x = abc[1] - def[1];
v.y = abc[2] + def[2];
v.z = abc[3] - def[3];
#else
const double cy = cos(eulerRad.z * 0.5);
const double sy = sin(eulerRad.z * 0.5);
const double cp = cos(eulerRad.y * 0.5);
const double sp = sin(eulerRad.y * 0.5);
const double cr = cos(eulerRad.x * 0.5);
const double sr = sin(eulerRad.x * 0.5);
v.w = cr * cp * cy + sr * sp * sy;
v.x = sr * cp * cy - cr * sp * sy;
v.y = cr * sp * cy + sr * cp * sy;
v.z = cr * cp * sy - sr * sp * cy;
#endif
return;
}
Quaternion::~Quaternion()
{
return;
}
Quaternion Quaternion::operator= (const Quaternion& q)
{
InvalidateCache();
v = q.v;
return (*this);
}
Quaternion Quaternion::operator* (const Quaternion& q) const
{
return Quaternion(Vector4d(
v.w * q.v.x + v.x * q.v.w + v.y * q.v.z - v.z * q.v.y,
v.w * q.v.y + v.y * q.v.w + v.z * q.v.x - v.x * q.v.z,
v.w * q.v.z + v.z * q.v.w + v.x * q.v.y - v.y * q.v.x,
v.w * q.v.w - v.x * q.v.x - v.y * q.v.y - v.z * q.v.z
));
}
Quaternion Quaternion::operator*(const double scale) const
{
return Quaternion(v * scale);
}
Quaternion Quaternion::operator/ (Quaternion& q) const
{
return ((*this) * (q.Inverse()));
}
Quaternion& Quaternion::operator*= (const Quaternion& q)
{
InvalidateCache();
Vector4d bufr = v;
v.x = bufr.w * q.v.x + bufr.x * q.v.w + bufr.y * q.v.z - bufr.z * q.v.y; // x
v.y = bufr.w * q.v.y + bufr.y * q.v.w + bufr.z * q.v.x - bufr.x * q.v.z; // y
v.z = bufr.w * q.v.z + bufr.z * q.v.w + bufr.x * q.v.y - bufr.y * q.v.x; // z
v.w = bufr.w * q.v.w - bufr.x * q.v.x - bufr.y * q.v.y - bufr.z * q.v.z; // w
return (*this);
}
Quaternion& Quaternion::operator*=(const double scale)
{
InvalidateCache();
v *= scale;
return (*this);
}
Quaternion& Quaternion::operator/= (const Quaternion& q)
{
InvalidateCache();
(*this) = (*this) * q.Inverse();
return (*this);
}
Vector3d Quaternion::operator*(const Vector3d& p) const
{
return RotateVector(p);
}
bool Quaternion::operator== (const Quaternion& q) const
{
return (v.Similar(q.v)) || (v.Similar(q.v * -1));
}
bool Quaternion::operator!= (const Quaternion& q) const
{
return (!v.Similar(q.v)) && (!v.Similar(q.v * -1));
}
Quaternion Quaternion::Inverse() const
{
const std::lock_guard<std::mutex> lock(lock_inverseCache);
if (!isCacheUpToDate_inverse)
{
cache_inverse = (Conjugate() * (1.0 / v.SqrMagnitude())).v;
isCacheUpToDate_inverse = true;
}
return Quaternion(cache_inverse);
}
Quaternion Quaternion::Conjugate() const
{
return Quaternion(Vector4d(-v.x, -v.y, -v.z, v.w));
}
Quaternion Quaternion::UnitQuaternion() const
{
return (*this) * (1.0 / v.Magnitude());
}
Vector3d Quaternion::RotateVector(const Vector3d& vec) const
{
Quaternion pure(Vector4d(vec.x, vec.y, vec.z, 0));
//Quaternion f = Conjugate() * pure * (*this);
//Quaternion f = Inverse().Conjugate() * pure * (this->Inverse());
Quaternion f = Inverse() * pure * (*this);
Vector3d toRet;
toRet.x = f.v.x;
toRet.y = f.v.y;
toRet.z = f.v.z;
return toRet;
}
Vector3d Quaternion::ToEulerAngles() const
{
const std::lock_guard<std::mutex> lock(lock_eulerCache);
if (!isCacheUpToDate_euler)
{
Vector3d euler;
// roll (x-axis rotation)
double sinr_cosp = 2.0 * (v.w * v.x + v.y * v.z);
double cosr_cosp = 1.0 - 2.0 * (v.x * v.x + v.y * v.y);
euler.x = std::atan2(sinr_cosp, cosr_cosp);
// pitch (y-axis rotation)
double sinp = 2.0 * (v.w * v.y - v.z * v.x);
if (std::abs(sinp) >= 1)
euler.y = std::copysign(PI / 2, sinp); // use 90 degrees if out of range
else
euler.y = std::asin(sinp);
// yaw (z-axis rotation)
double siny_cosp = 2.0 * (v.w * v.z + v.x * v.y);
double cosy_cosp = 1.0 - 2.0 * (v.y * v.y + v.z * v.z);
euler.z = std::atan2(siny_cosp, cosy_cosp);
euler *= Rad2Deg;
cache_euler = euler;
isCacheUpToDate_matrix = true;
}
return cache_euler;
}
Matrix4x4 Quaternion::ToRotationMatrix() const
{
const std::lock_guard<std::mutex> lock(lock_matrixCache);
if (!isCacheUpToDate_matrix)
{
Matrix4x4 m;
const double sqx = v.x * v.x;
const double sqy = v.y * v.y;
const double sqz = v.z * v.z;
const double sqw = v.w * v.w;
const double x = v.x;
const double y = v.y;
const double z = v.z;
const double w = v.w;
// invs (inverse square length) is only required if quaternion is not already normalised
double invs = 1.0 / (sqx + sqy + sqz + sqw);
// since sqw + sqx + sqy + sqz =1/invs*invs
// yaw (y)
m.c = ((2 * x * z) - (2 * w * y)) * invs;
m.f = (1 - (2 * sqx) - (2 * sqz)) * invs;
m.i = ((2 * x * z) + (2 * w * y)) * invs;
// pitch (x)
m.a = (1 - (2 * sqy) - (2 * sqz)) * invs;
m.g = ((2 * y * z) + (2 * w * x)) * invs;
m.j = ((2 * y * z) - (2 * w * x)) * invs;
// roll (z)
m.b = ((2 * x * v.y) + (2 * w * z)) * invs;
m.e = ((2 * x * v.y) - (2 * w * z)) * invs;
m.k = (1 - (2 * sqx) - (2 * sqy)) * invs;
m.p = 1;
cache_matrix = m;
isCacheUpToDate_matrix = true;
}
return cache_matrix;
}
Vector4d Quaternion::GetRawValues() const
{
return v;
}
Quaternion Quaternion::AngleBetween(const Quaternion& other) const
{
return other * Conjugate();
}
void Quaternion::SetRawValues(const Vector4d values)
{
InvalidateCache();
v = values;
return;
}
Quaternion Quaternion::Lerp(const Quaternion& other, double t) const
{
return Quaternion(v.Lerp(other.v, t)).UnitQuaternion();
}
void Quaternion::InvalidateCache()
{
isCacheUpToDate_euler = false;
isCacheUpToDate_matrix = false;
isCacheUpToDate_inverse = false;
return;
}
namespace Eule
{
std::ostream& operator<< (std::ostream& os, const Quaternion& q)
{
os << "[" << q.v << "]";

View File

@ -31,7 +31,7 @@ namespace Eule
Quaternion operator* (const Quaternion& q) const;
//! Divides (applies)
Quaternion operator/ (Quaternion& q) const;
Quaternion operator/ (const Quaternion& q) const;
//! Also multiplies
Quaternion& operator*= (const Quaternion& q);