279 lines
6.7 KiB
C++
279 lines
6.7 KiB
C++
#include <unordered_map>
|
|
#include "GCrypt/Feistel.h"
|
|
#include "GCrypt/Util.h"
|
|
#include "GCrypt/Config.h"
|
|
#include "GCrypt/SBoxLookup.h"
|
|
|
|
namespace Leonetienne::GCrypt {
|
|
|
|
Feistel::Feistel() {
|
|
}
|
|
|
|
Feistel::Feistel(const Key& key) {
|
|
SetKey(key);
|
|
}
|
|
|
|
Feistel::~Feistel() {
|
|
ZeroKeyMemory();
|
|
}
|
|
|
|
void Feistel::SetKey(const Key& key) {
|
|
GenerateRoundKeys(key);
|
|
isInitialized = true;
|
|
}
|
|
|
|
Block Feistel::Encipher(const Block& data) {
|
|
return Run(data, false);
|
|
}
|
|
|
|
Block Feistel::Decipher(const Block& data) {
|
|
return Run(data, true);
|
|
}
|
|
|
|
Block Feistel::Run(const Block& data, bool modeEncrypt) {
|
|
if (!isInitialized) {
|
|
throw std::runtime_error("Attempted to digest data on uninitialized GCipher!");
|
|
}
|
|
|
|
const auto splitData = FeistelSplit(data);
|
|
Halfblock l = splitData.first;
|
|
Halfblock r = splitData.second;
|
|
|
|
Halfblock tmp;
|
|
|
|
for (std::size_t i = 0; i < N_ROUNDS; i++) {
|
|
|
|
// Encryption
|
|
if (modeEncrypt) {
|
|
const std::size_t keyIndex = i;
|
|
|
|
// Do a feistel round
|
|
tmp = r;
|
|
r = l ^ F(r, roundKeys[keyIndex]);
|
|
l = tmp;
|
|
|
|
// Jumble it up a bit more
|
|
l.ShiftRowsUpInplace();
|
|
l.ShiftCellsRightInplace();
|
|
l.ShiftBitsLeftInplace();
|
|
l.ShiftColumnsLeftInplace();
|
|
// Seal all these operations with a key
|
|
l += ReductionFunction(roundKeys[keyIndex]);
|
|
}
|
|
|
|
// Decryption
|
|
else {
|
|
// Decryption needs keys in reverse order
|
|
const std::size_t keyIndex = N_ROUNDS - i - 1;
|
|
|
|
// Unjumble the jumble
|
|
r -= ReductionFunction(roundKeys[keyIndex]);
|
|
r.ShiftColumnsRightInplace();
|
|
r.ShiftBitsRightInplace();
|
|
r.ShiftCellsLeftInplace();
|
|
r.ShiftRowsDownInplace();
|
|
|
|
// Do a feistel round
|
|
tmp = r;
|
|
r = l ^ F(r, roundKeys[keyIndex]);
|
|
l = tmp;
|
|
}
|
|
|
|
}
|
|
|
|
// Block has finished de*ciphering.
|
|
// Let's generate a new set of round keys.
|
|
GenerateRoundKeys(roundKeys.back());
|
|
|
|
return FeistelCombine(r, l);
|
|
}
|
|
|
|
Halfblock Feistel::F(Halfblock m, const Key& key) {
|
|
|
|
// Made-up F function:
|
|
// Expand to full bitwidth
|
|
Block m_expanded = ExpansionFunction(m);
|
|
|
|
// Mix up the block a bit
|
|
m_expanded.ShiftCellsRightInplace();
|
|
m_expanded.ShiftRowsUpInplace();
|
|
|
|
// Matrix-mult with key (this is irreversible)
|
|
m_expanded *= key;
|
|
|
|
// Now do a bitshift
|
|
m_expanded.ShiftBitsLeftInplace();
|
|
|
|
// Apply the sbox
|
|
SBox(m_expanded);
|
|
|
|
// Reduce back to a halfblock
|
|
Halfblock hb = ReductionFunction(m_expanded);
|
|
|
|
// To jumble it up a last time,
|
|
// matrix-multiply it with the input halfblock
|
|
hb *= m;
|
|
|
|
return hb;
|
|
}
|
|
|
|
std::pair<Halfblock, Halfblock> Feistel::FeistelSplit(const Block& block) {
|
|
Halfblock l;
|
|
Halfblock r;
|
|
|
|
memcpy(l.Data(), block.Data(), Halfblock::BLOCK_SIZE);
|
|
memcpy(r.Data(), block.Data() + 8, Halfblock::BLOCK_SIZE);
|
|
// +8, because 8 is HALF the number of elements in the array. We only want to copy HALF a full-sized block.
|
|
|
|
return std::make_pair(l, r);
|
|
}
|
|
|
|
Block Feistel::FeistelCombine(const Halfblock& l, const Halfblock& r) {
|
|
Block b;
|
|
|
|
memcpy(b.Data(), l.Data(), Halfblock::BLOCK_SIZE);
|
|
memcpy(b.Data() + 8, r.Data(), Halfblock::BLOCK_SIZE);
|
|
// +8, because 8 is HALF the number of elements in the array. We only want to copy HALF a full-sized block.
|
|
|
|
return b;
|
|
}
|
|
|
|
Block Feistel::ExpansionFunction(const Halfblock& hb) {
|
|
Block b;
|
|
|
|
// Copy the bits over
|
|
for (std::size_t i = 0; i < 16; i++) {
|
|
b[i] = hb[i];
|
|
}
|
|
|
|
// Multiply the block a few tims with a bitshifted version
|
|
// This is irriversible, too
|
|
for (std::size_t i = 0; i < 3; i++) {
|
|
b *= b.ShiftBitsRight();
|
|
}
|
|
|
|
return b;
|
|
}
|
|
|
|
Halfblock Feistel::ReductionFunction(const Block& block) {
|
|
|
|
// Just apply a modulo operation, remapping a 32bit integer
|
|
// onto 16bit space (default configuration).
|
|
// Without saying, modulo is irreversible.
|
|
Halfblock hb;
|
|
for (std::size_t i = 0; i < 16; i++) {
|
|
hb[i] = block[i] % (1 << (Halfblock::CHUNK_SIZE_BITS - 1));
|
|
}
|
|
|
|
return hb;
|
|
}
|
|
|
|
void Feistel::SBox(Block& block) {
|
|
|
|
std::uint8_t* curByte = (std::uint8_t*)(void*)block.Data();
|
|
|
|
// Iterate over all bytes in the block
|
|
for (std::size_t i = 0; i < Block::BLOCK_SIZE; i++) {
|
|
curByte++;
|
|
|
|
// Subsitute byte
|
|
*curByte = sboxLookup[*curByte];
|
|
}
|
|
|
|
return;
|
|
}
|
|
|
|
/*
|
|
std::string Feistel::SBox(const std::string& in) {
|
|
static std::unordered_map<std::string, std::string> subMap;
|
|
static bool mapInitialized = false;
|
|
if (!mapInitialized) {
|
|
subMap["0000"] = "1100";
|
|
subMap["0001"] = "1000";
|
|
subMap["0010"] = "0001";
|
|
subMap["0011"] = "0111";
|
|
subMap["0100"] = "1011";
|
|
subMap["0101"] = "0011";
|
|
subMap["0110"] = "1101";
|
|
subMap["0111"] = "1111";
|
|
subMap["1000"] = "0000";
|
|
subMap["1001"] = "1010";
|
|
subMap["1010"] = "0100";
|
|
subMap["1011"] = "1001";
|
|
subMap["1100"] = "0010";
|
|
subMap["1101"] = "1110";
|
|
subMap["1110"] = "0101";
|
|
subMap["1111"] = "0110";
|
|
mapInitialized = true;
|
|
}
|
|
|
|
return subMap[in];
|
|
}
|
|
*/
|
|
|
|
void Feistel::GenerateRoundKeys(const Key& seedKey) {
|
|
// Clear initial key memory
|
|
ZeroKeyMemory();
|
|
roundKeys = Keyset();
|
|
|
|
// Derive all round keys with simple matrix operations
|
|
roundKeys[0] = seedKey;
|
|
|
|
for (std::size_t i = 1; i < roundKeys.size(); i++) {
|
|
// Initialize new round key with last round key
|
|
const Key& lastKey = roundKeys[i - 1];
|
|
roundKeys[i] = lastKey;
|
|
|
|
// Stir it good
|
|
roundKeys[i].ShiftRowsUpInplace();
|
|
|
|
// Bitshift and matrix-mult 3 times
|
|
// (each time jumbles it up pretty good)
|
|
// This is irreversible
|
|
roundKeys[i].ShiftBitsRightInplace();
|
|
roundKeys[i] *= lastKey;
|
|
roundKeys[i].ShiftBitsRightInplace();
|
|
roundKeys[i] *= lastKey;
|
|
roundKeys[i].ShiftBitsRightInplace();
|
|
roundKeys[i] *= lastKey;
|
|
|
|
// Lastly, do apply some cell shifting, and other mutations
|
|
roundKeys[i].ShiftCellsRightInplace();
|
|
roundKeys[i] += lastKey;
|
|
roundKeys[i].ShiftColumnsRightInplace();
|
|
roundKeys[i] ^= lastKey;
|
|
}
|
|
|
|
return;
|
|
}
|
|
|
|
void Feistel::operator=(const Feistel& other) {
|
|
roundKeys = other.roundKeys;
|
|
isInitialized = other.isInitialized;
|
|
|
|
return;
|
|
}
|
|
|
|
// These pragmas only work for MSVC and g++, as far as i know. Beware!!!
|
|
#if defined _WIN32 || defined _WIN64
|
|
#pragma optimize("", off )
|
|
#elif defined __GNUG__
|
|
#pragma GCC push_options
|
|
#pragma GCC optimize ("O0")
|
|
#endif
|
|
void Feistel::ZeroKeyMemory() {
|
|
for (Key& key : roundKeys) {
|
|
key.Reset();
|
|
}
|
|
|
|
return;
|
|
}
|
|
#if defined _WIN32 || defined _WIN64
|
|
#pragma optimize("", on )
|
|
#elif defined __GNUG__
|
|
#pragma GCC pop_options
|
|
#endif
|
|
|
|
}
|
|
|