#include #include "GCrypt/Feistel.h" #include "GCrypt/Util.h" #include "GCrypt/Config.h" #include "GCrypt/SBoxLookup.h" namespace Leonetienne::GCrypt { Feistel::Feistel(const Key& key) { SetKey(key); return; } Feistel::~Feistel() { ZeroKeyMemory(); return; } void Feistel::SetKey(const Key& key) { GenerateRoundKeys(key); return; } Block Feistel::Encipher(const Block& data) { return Run(data, false); } Block Feistel::Decipher(const Block& data) { return Run(data, true); } Block Feistel::Run(const Block& data, bool reverseKeys) { const auto splitData = FeistelSplit(data); Halfblock l = splitData.first; Halfblock r = splitData.second; Halfblock tmp; for (std::size_t i = 0; i < N_ROUNDS; i++) { // Calculate key index std::size_t keyIndex; if (reverseKeys) { keyIndex = N_ROUNDS - i - 1; } else { keyIndex = i; } // Do a feistel round tmp = r; r = l ^ F(r, roundKeys[keyIndex]); l = tmp; } // Block has finished de*ciphering. // Let's generate a new set of round keys. GenerateRoundKeys(roundKeys.back()); return FeistelCombine(r, l); } Halfblock Feistel::F(Halfblock m, const Key& key) { // Made-up F function: // Expand to full bitwidth Block m_expanded = ExpansionFunction(m); // Mix up the block a bit m_expanded.ShiftCellsRightInplace(); m_expanded.ShiftRowsUpInplace(); // Matrix-mult with key (this is irreversible) m_expanded *= key; // Now do a bitshift m_expanded.ShiftBitsLeftInplace(); // Apply the sbox SBox(m_expanded); // Reduce back to a halfblock Halfblock hb = ReductionFunction(m_expanded); // To jumble it up a last time, // matrix-multiply it with the input halfblock hb *= m; return hb; } std::pair Feistel::FeistelSplit(const Block& block) { Halfblock l; Halfblock r; memcpy(l.Data(), block.Data(), Halfblock::BLOCK_SIZE); memcpy(r.Data(), block.Data() + 8, Halfblock::BLOCK_SIZE); // +8, because 8 is HALF the number of elements in the array. We only want to copy HALF a full-sized block. return std::make_pair(l, r); } Block Feistel::FeistelCombine(const Halfblock& l, const Halfblock& r) { Block b; memcpy(b.Data(), l.Data(), Halfblock::BLOCK_SIZE); memcpy(b.Data() + 8, r.Data(), Halfblock::BLOCK_SIZE); // +8, because 8 is HALF the number of elements in the array. We only want to copy HALF a full-sized block. return b; } Block Feistel::ExpansionFunction(const Halfblock& hb) { Block b; // Copy the bits over for (std::size_t i = 0; i < 16; i++) { b[i] = hb[i]; } // Multiply the block a few tims with a bitshifted version // This is irriversible, too for (std::size_t i = 0; i < 3; i++) { b *= b.ShiftBitsRight(); } return b; } Halfblock Feistel::ReductionFunction(const Block& block) { // Just apply a modulo operation, remapping a 32bit integer // onto 16bit space (default configuration). // Without saying, modulo is irreversible. Halfblock hb; for (std::size_t i = 0; i < 16; i++) { hb[i] = block[i] % (1 << (Halfblock::CHUNK_SIZE_BITS - 1)); } return hb; } void Feistel::SBox(Block& block) { std::uint8_t* curByte = (std::uint8_t*)(void*)block.Data(); // Iterate over all bytes in the block for (std::size_t i = 0; i < Block::BLOCK_SIZE; i++) { curByte++; // Subsitute byte *curByte = sboxLookup[*curByte]; } return; } /* std::string Feistel::SBox(const std::string& in) { static std::unordered_map subMap; static bool mapInitialized = false; if (!mapInitialized) { subMap["0000"] = "1100"; subMap["0001"] = "1000"; subMap["0010"] = "0001"; subMap["0011"] = "0111"; subMap["0100"] = "1011"; subMap["0101"] = "0011"; subMap["0110"] = "1101"; subMap["0111"] = "1111"; subMap["1000"] = "0000"; subMap["1001"] = "1010"; subMap["1010"] = "0100"; subMap["1011"] = "1001"; subMap["1100"] = "0010"; subMap["1101"] = "1110"; subMap["1110"] = "0101"; subMap["1111"] = "0110"; mapInitialized = true; } return subMap[in]; } */ void Feistel::GenerateRoundKeys(const Key& seedKey) { // Clear initial key memory ZeroKeyMemory(); roundKeys = Keyset(); // Derive all round keys with simple matrix operations roundKeys[0] = seedKey; for (std::size_t i = 1; i < roundKeys.size(); i++) { // Initialize new round key with last round key const Key& lastKey = roundKeys[i - 1]; roundKeys[i] = lastKey; // Stir it good roundKeys[i].ShiftRowsUpInplace(); // Bitshift and matrix-mult 3 times // (each time jumbles it up pretty good) // This is irreversible roundKeys[i].ShiftBitsRightInplace(); roundKeys[i] *= lastKey; roundKeys[i].ShiftBitsRightInplace(); roundKeys[i] *= lastKey; roundKeys[i].ShiftBitsRightInplace(); roundKeys[i] *= lastKey; // Lastly, do apply some cell shifting, and other mutations roundKeys[i].ShiftCellsRightInplace(); roundKeys[i] += lastKey; roundKeys[i].ShiftColumnsRightInplace(); roundKeys[i] ^= lastKey; } return; } void Feistel::operator=(const Feistel& other) { roundKeys = other.roundKeys; return; } // These pragmas only work for MSVC and g++, as far as i know. Beware!!! #if defined _WIN32 || defined _WIN64 #pragma optimize("", off ) #elif defined __GNUG__ #pragma GCC push_options #pragma GCC optimize ("O0") #endif void Feistel::ZeroKeyMemory() { for (Key& key : roundKeys) { key.Reset(); } return; } #if defined _WIN32 || defined _WIN64 #pragma optimize("", on ) #elif defined __GNUG__ #pragma GCC pop_options #endif }