/* * BSD 2-Clause License * * Copyright (c) 2021, Leon Etienne * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions are met: * * 1. Redistributions of source code must retain the above copyright notice, this * list of conditions and the following disclaimer. * * 2. Redistributions in binary form must reproduce the above copyright notice, * this list of conditions and the following disclaimer in the documentation * and/or other materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE * DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. */ #include "GhettoCrypt.h" /*** ./../GhettoCrypt/Cipher.cpp ***/ #include #include GhettoCipher::Cipher::Cipher(const Block& key) : key { key }, initializationVector(InitializationVector(key)) { return; } GhettoCipher::Cipher::Cipher(const std::string& password) : key { PasswordToKey(password) }, initializationVector(InitializationVector(key)) { return; } GhettoCipher::Cipher::~Cipher() { // Clear key memory ZeroKeyMemory(); return; } void GhettoCipher::Cipher::SetKey(const Block& key) { ZeroKeyMemory(); this->key = key; return; } void GhettoCipher::Cipher::SetPassword(const std::string& password) { ZeroKeyMemory(); key = PasswordToKey(password); return; } GhettoCipher::Flexblock GhettoCipher::Cipher::Encipher(const Flexblock& data, bool printProgress) const { // Split cleartext into blocks std::vector blocks; for (std::size_t i = 0; i < data.size(); i += BLOCK_SIZE) blocks.push_back(Block( PadStringToLength(data.substr(i, BLOCK_SIZE), BLOCK_SIZE, '0', false)) ); // Encrypt individual blocks using cipher block chaining Feistel feistel(key); for (std::size_t i = 0; i < blocks.size(); i++) { // Print reports if desired. If we have > 1000 blocks, print one report every 100 blocks. Otherwise for every 10th block. if ((i % ((blocks.size() > 1000)? 100 : 10) == 0) && (printProgress)) std::cout << "Encrypting... (Block " << i << " / " << blocks.size() << " - " << ((float)i*100 / blocks.size()) << "%)" << std::endl; const Block& lastBlock = (i>0) ? blocks[i-1] : initializationVector; blocks[i] = feistel.Encipher(blocks[i] ^ lastBlock); // Xor last cipher block with new clear text block before E() } // Concatenate ciphertext blocks back into a flexblock std::stringstream ss; for (Block& b : blocks) ss << b; // Return it return ss.str(); } GhettoCipher::Flexblock GhettoCipher::Cipher::Decipher(const Flexblock& data, bool printProgress) const { // Split ciphertext into blocks std::vector blocks; for (std::size_t i = 0; i < data.size(); i += BLOCK_SIZE) blocks.push_back(Block( PadStringToLength(data.substr(i, BLOCK_SIZE), BLOCK_SIZE, '0', false)) ); // Decrypt individual blocks Feistel feistel(key); // We can't do this in-loop for decryption, because we are decrypting the blocks in-place. Block lastBlock = initializationVector; for (std::size_t i = 0; i < blocks.size(); i++) { // Print reports if desired. If we have > 1000 blocks, print one report every 100 blocks. Otherwise for every 10th block. if ((i % ((blocks.size() > 1000) ? 100 : 10) == 0) && (printProgress)) std::cout << "Decrypting... (Block " << i << " / " << blocks.size() << " - " << ((float)i*100/ blocks.size()) << "%)" << std::endl; Block tmpCopy = blocks[i]; blocks[i] = feistel.Decipher(blocks[i]) ^ lastBlock; // Decipher cipher block [i] and then xor it with the last cipher block [i-1] we've had lastBlock = std::move(tmpCopy); } // Concatenate ciphertext blocks back into a flexblock std::stringstream ss; for (Block& b : blocks) ss << b; // Return it return ss.str(); } // These pragmas only work for MSVC and g++, as far as i know. Beware!!! #if defined _WIN32 || defined _WIN64 #pragma optimize("", off ) #elif defined __GNUG__ #pragma GCC push_options #pragma GCC optimize ("O0") #endif void GhettoCipher::Cipher::ZeroKeyMemory() { key.reset(); return; } #if defined _WIN32 || defined _WIN64 #pragma optimize("", on ) #elif defined __GNUG__ #pragma GCC pop_options #endif /*** ./../GhettoCrypt/Feistel.cpp ***/ #include GhettoCipher::Feistel::Feistel(const Block& key) { SetKey(key); return; } GhettoCipher::Feistel::~Feistel() { ZeroKeyMemory(); return; } void GhettoCipher::Feistel::SetKey(const Block& key) { GenerateRoundKeys(key); return; } GhettoCipher::Block GhettoCipher::Feistel::Encipher(const Block& data) { return Run(data, false); } GhettoCipher::Block GhettoCipher::Feistel::Decipher(const Block& data) { return Run(data, true); } GhettoCipher::Block GhettoCipher::Feistel::Run(const Block& data, bool reverseKeys) { const auto splitData = FeistelSplit(data); GhettoCipher::Halfblock l = splitData.first; GhettoCipher::Halfblock r = splitData.second; Halfblock tmp; for (std::size_t i = 0; i < N_ROUNDS; i++) { // Calculate key index std::size_t keyIndex; if (reverseKeys) keyIndex = N_ROUNDS - i - 1; else keyIndex = i; // Do a feistel round tmp = r; r = l ^ F(r, roundKeys[keyIndex]); l = tmp; } // Block has finished de*ciphering. // Let's generate a new set of round keys. GenerateRoundKeys((Block)roundKeys.back()); return FeistelCombine(r, l); } GhettoCipher::Halfblock GhettoCipher::Feistel::F(Halfblock m, const Block& key) { // Made-up F function // Expand to full bitwidth Block m_expanded = ExpansionFunction(m); // Shift to left by 1 m_expanded = Shiftl(m_expanded, 1); // Xor with key m_expanded ^= key; // Non-linearly apply subsitution boxes std::stringstream ss; const std::string m_str = m_expanded.to_string(); for (std::size_t i = 0; i < BLOCK_SIZE; i += 4) { ss << SBox(m_str.substr(i, 4)); } m_expanded = Block(ss.str()); // Return the compressed version return CompressionFunction(m_expanded); } std::pair GhettoCipher::Feistel::FeistelSplit(const Block& block) { const std::string bits = block.to_string(); Halfblock l(bits.substr(0, bits.size() / 2)); Halfblock r(bits.substr(bits.size() / 2)); return std::make_pair(l, r); } GhettoCipher::Block GhettoCipher::Feistel::FeistelCombine(const Halfblock& l, const Halfblock& r) { return Block(l.to_string() + r.to_string()); } GhettoCipher::Block GhettoCipher::Feistel::ExpansionFunction(const Halfblock& block) { std::stringstream ss; const std::string bits = block.to_string(); std::unordered_map expansionMap; expansionMap["00"] = "1101"; expansionMap["01"] = "1000"; expansionMap["10"] = "0010"; expansionMap["11"] = "0111"; // We have to double the bits! for (std::size_t i = 0; i < HALFBLOCK_SIZE; i += 2) { const std::string sub = bits.substr(i, 2); ss << expansionMap[sub]; } return Block(ss.str()); } GhettoCipher::Halfblock GhettoCipher::Feistel::CompressionFunction(const Block& block) { std::stringstream ss; const std::string bits = block.to_string(); std::unordered_map compressionMap; compressionMap["0000"] = "10"; compressionMap["0001"] = "01"; compressionMap["0010"] = "10"; compressionMap["0011"] = "10"; compressionMap["0100"] = "11"; compressionMap["0101"] = "01"; compressionMap["0110"] = "00"; compressionMap["0111"] = "11"; compressionMap["1000"] = "01"; compressionMap["1001"] = "00"; compressionMap["1010"] = "11"; compressionMap["1011"] = "00"; compressionMap["1100"] = "11"; compressionMap["1101"] = "10"; compressionMap["1110"] = "00"; compressionMap["1111"] = "01"; // We have to half the bits! for (std::size_t i = 0; i < BLOCK_SIZE; i += 4) { const std::string sub = bits.substr(i, 4); ss << compressionMap[sub]; } return Halfblock(ss.str()); } std::string GhettoCipher::Feistel::SBox(const std::string& in) { static std::unordered_map subMap; static bool mapInitialized = false; if (!mapInitialized) { subMap["0000"] = "1100"; subMap["0001"] = "1000"; subMap["0010"] = "0001"; subMap["0011"] = "0111"; subMap["0100"] = "1011"; subMap["0101"] = "0011"; subMap["0110"] = "1101"; subMap["0111"] = "1111"; subMap["1000"] = "0000"; subMap["1001"] = "1010"; subMap["1010"] = "0100"; subMap["1011"] = "1001"; subMap["1100"] = "0010"; subMap["1101"] = "1110"; subMap["1110"] = "0101"; subMap["1111"] = "0110"; mapInitialized = true; } return subMap[in]; } void GhettoCipher::Feistel::GenerateRoundKeys(const Block& seedKey) { // Clear initial key memory ZeroKeyMemory(); roundKeys = Keyset(); // Derive the initial two round keys // Compress- substitute, and expand the seed key to form the initial and the second-initial round key // This action is non-linear and irreversible, and thus strenghtens security. Halfblock compressedSeed1 = CompressionFunction(seedKey); Halfblock compressedSeed2 = CompressionFunction(Shiftl(seedKey, 1)); // Shifting one key by 1 will result in a completely different compression // To add further confusion, let's shift seed1 by 1 aswell (after compression, but before substitution) // but only if the total number of bits set are a multiple of 3 // if it is a multiple of 4, we'll shift it by 1 into the opposite direction const std::size_t setBits1 = compressedSeed1.count(); if (setBits1 % 4 == 0) compressedSeed1 = Shiftr(compressedSeed1, 1); else if (setBits1 % 3 == 0) compressedSeed1 = Shiftl(compressedSeed1, 1); // Now apply substitution std::stringstream ssKey1; std::stringstream ssKey2; const std::string bitsKey1 = compressedSeed1.to_string(); const std::string bitsKey2 = compressedSeed2.to_string(); for (std::size_t i = 0; i < HALFBLOCK_SIZE; i += 4) { ssKey1 << SBox(bitsKey1.substr(i, 4)); ssKey2 << SBox(bitsKey2.substr(i, 4)); } compressedSeed1 = Halfblock(ssKey1.str()); compressedSeed2 = Halfblock(ssKey2.str()); // Now extrapolate them to BLOCK_SIZE (key size) again // Xor with the original seed key to get rid of the repititions caused by the expansion roundKeys[0] = ExpansionFunction(compressedSeed1) ^ seedKey; roundKeys[1] = ExpansionFunction(compressedSeed2) ^ seedKey; // Now derive all other round keys for (std::size_t i = 2; i < roundKeys.size(); i++) { // Initialize new round key with last round key Block newKey = roundKeys[i - 1]; // Shift to left by how many bits are set, modulo 8 newKey = Shiftl(newKey, newKey.count() % 8); // This action is irreversible // Split into two halfblocks, // apply F() to one halfblock with rk[i-2], // xor the other one with it // and put them back together auto halfkeys = FeistelSplit(newKey); Halfblock halfkey1 = F(halfkeys.first, roundKeys[i - 2]); Halfblock halfkey2 = halfkeys.second ^ halfkey1; roundKeys[i] = FeistelCombine(halfkey1, halfkey2); } return; } // These pragmas only work for MSVC and g++, as far as i know. Beware!!! #if defined _WIN32 || defined _WIN64 #pragma optimize("", off ) #elif defined __GNUG__ #pragma GCC push_options #pragma GCC optimize ("O0") #endif void GhettoCipher::Feistel::ZeroKeyMemory() { for (Block& key : roundKeys) key.reset(); return; } #if defined _WIN32 || defined _WIN64 #pragma optimize("", on ) #elif defined __GNUG__ #pragma GCC pop_options #endif /*** ./../GhettoCrypt/GhettoCryptWrapper.cpp ***/ std::string GhettoCipher::GhettoCryptWrapper::EncryptString(const std::string& cleartext, const std::string& password) { // Instanciate our cipher and supply a key const Block key = PasswordToKey(password); Cipher cipher(key); // Recode the ascii-string to bits const Flexblock cleartext_bits = StringToBits(cleartext); // Encrypt our cleartext bits const Flexblock ciphertext_bits = cipher.Encipher(cleartext_bits); // Recode the ciphertext bits to a hex-string const std::string ciphertext = BitsToHexstring(ciphertext_bits); // Return it return ciphertext; } std::string GhettoCipher::GhettoCryptWrapper::DecryptString(const std::string& ciphertext, const std::string& password) { // Instanciate our cipher and supply a key const Block key = PasswordToKey(password); Cipher cipher(key); // Recode the hex-string to bits const Flexblock ciphertext_bits = HexstringToBits(ciphertext); // Decrypt the ciphertext bits const std::string cleartext_bits = cipher.Decipher(ciphertext_bits); // Recode the cleartext bits to an ascii-string const std::string cleartext = BitsToString(cleartext_bits); // Return it return cleartext; } bool GhettoCipher::GhettoCryptWrapper::EncryptFile(const std::string& filename_in, const std::string& filename_out, const std::string& password, bool printProgressReport) { try { // Read the file to bits const Flexblock cleartext_bits = ReadFileToBits(filename_in); // Instanciate our cipher and supply a key const Block key = PasswordToKey(password); Cipher cipher(key); // Encrypt our cleartext bits const Flexblock ciphertext_bits = cipher.Encipher(cleartext_bits, printProgressReport); // Write our ciphertext bits to file WriteBitsToFile(filename_out, ciphertext_bits); return true; } catch (std::runtime_error&) { return false; } } bool GhettoCipher::GhettoCryptWrapper::DecryptFile(const std::string& filename_in, const std::string& filename_out, const std::string& password, bool printProgressReport) { try { // Read the file to bits const Flexblock ciphertext_bits = ReadFileToBits(filename_in); // Instanciate our cipher and supply a key const Block key = PasswordToKey(password); Cipher cipher(key); // Decrypt the ciphertext bits const Flexblock cleartext_bits = cipher.Decipher(ciphertext_bits, printProgressReport); // Write our cleartext bits to file WriteBitsToFile(filename_out, cleartext_bits); return true; } catch (std::runtime_error&) { return false; } } /*** ./../GhettoCrypt/InitializationVector.cpp ***/ GhettoCipher::InitializationVector::InitializationVector(const Block& seed) { // We'll generate our initialization vector by encrypting our seed with itself as a key // iv = E(M=seed, K=seed) iv = Feistel(seed).Encipher(seed); } GhettoCipher::InitializationVector::operator GhettoCipher::Block() const { return iv; }