#include #include "GCrypt/Feistel.h" #include "GCrypt/Util.h" #include "GCrypt/Config.h" namespace Leonetienne::GCrypt { Feistel::Feistel(const Key& key) { SetKey(key); return; } Feistel::~Feistel() { ZeroKeyMemory(); return; } void Feistel::SetKey(const Key& key) { GenerateRoundKeys(key); return; } Block Feistel::Encipher(const Block& data) { return Run(data, false); } Block Feistel::Decipher(const Block& data) { return Run(data, true); } Block Feistel::Run(const Block& data, bool reverseKeys) { const auto splitData = FeistelSplit(data); Halfblock l = splitData.first; Halfblock r = splitData.second; Halfblock tmp; for (std::size_t i = 0; i < N_ROUNDS; i++) { // Calculate key index std::size_t keyIndex; if (reverseKeys) { keyIndex = N_ROUNDS - i - 1; } else { keyIndex = i; } // Do a feistel round tmp = r; r = l ^ F(r, roundKeys[keyIndex]); l = tmp; } // Block has finished de*ciphering. // Let's generate a new set of round keys. GenerateRoundKeys((Key)roundKeys.back()); return FeistelCombine(r, l); } Halfblock Feistel::F(Halfblock m, const Key& key) { // Made-up F function // Expand to full bitwidth Block m_expanded = ExpansionFunction(m); // Mix up the block a bit m_expanded.ShiftCellsRightInplace(); m_expanded.ShiftRowsUpInplace(); // Matrix-mult with key (this is irreversible) m_expanded *= key; // Now do a bitshift m_expanded.ShiftBitsLeftInplace(); // Non-linearly apply subsitution boxes std::stringstream ss; const std::string m_str = m_expanded.ToString(); for (std::size_t i = 0; i < Block::BLOCK_SIZE_BITS; i += 4) { ss << SBox(m_str.substr(i, 4)); } m_expanded = Block(ss.str()); // Return the compressed version, shifted by 3 //return Shiftl(CompressionFunction(m_expanded), 3); return (CompressionFunction(m_expanded)); } std::pair Feistel::FeistelSplit(const Block& block) { const std::string bits = block.ToString(); Halfblock l(bits.substr(0, bits.size() / 2)); Halfblock r(bits.substr(bits.size() / 2)); return std::make_pair(l, r); } Block Feistel::FeistelCombine(const Halfblock& l, const Halfblock& r) { return Block(l.ToString() + r.ToString()); } Block Feistel::ExpansionFunction(const Halfblock& block) { std::stringstream ss; const std::string bits = block.ToString(); std::unordered_map expansionMap; expansionMap["00"] = "1101"; expansionMap["01"] = "1000"; expansionMap["10"] = "0010"; expansionMap["11"] = "0111"; // We have to double the bits! for (std::size_t i = 0; i < Halfblock::BLOCK_SIZE_BITS; i += 2) { const std::string sub = bits.substr(i, 2); ss << expansionMap[sub]; } return Block(ss.str()); } Halfblock Feistel::CompressionFunction(const Block& block) { std::stringstream ss; const std::string bits = block.ToString(); std::unordered_map compressionMap; compressionMap["0000"] = "10"; compressionMap["0001"] = "01"; compressionMap["0010"] = "11"; compressionMap["0011"] = "10"; compressionMap["0100"] = "11"; compressionMap["0101"] = "01"; compressionMap["0110"] = "00"; compressionMap["0111"] = "01"; compressionMap["1000"] = "11"; compressionMap["1001"] = "00"; compressionMap["1010"] = "11"; compressionMap["1011"] = "00"; compressionMap["1100"] = "11"; compressionMap["1101"] = "10"; compressionMap["1110"] = "00"; compressionMap["1111"] = "01"; // We have to half the bits! for (std::size_t i = 0; i < Block::BLOCK_SIZE_BITS; i += 4) { const std::string sub = bits.substr(i, 4); ss << compressionMap[sub]; } return Halfblock(ss.str()); } std::string Feistel::SBox(const std::string& in) { static std::unordered_map subMap; static bool mapInitialized = false; if (!mapInitialized) { subMap["0000"] = "1100"; subMap["0001"] = "1000"; subMap["0010"] = "0001"; subMap["0011"] = "0111"; subMap["0100"] = "1011"; subMap["0101"] = "0011"; subMap["0110"] = "1101"; subMap["0111"] = "1111"; subMap["1000"] = "0000"; subMap["1001"] = "1010"; subMap["1010"] = "0100"; subMap["1011"] = "1001"; subMap["1100"] = "0010"; subMap["1101"] = "1110"; subMap["1110"] = "0101"; subMap["1111"] = "0110"; mapInitialized = true; } return subMap[in]; } void Feistel::GenerateRoundKeys(const Key& seedKey) { // Clear initial key memory ZeroKeyMemory(); roundKeys = Keyset(); // Derive all round keys with simple matrix operations roundKeys[0] = seedKey; for (std::size_t i = 1; i < roundKeys.size(); i++) { // Initialize new round key with last round key const Key& lastKey = roundKeys[i - 1]; roundKeys[i] = lastKey; // Stir it good roundKeys[i].ShiftRowsUpInplace(); // Bitshift and matrix-mult 3 times // (each time jumbles it up pretty good) // This is irreversible roundKeys[i].ShiftBitsRightInplace(); roundKeys[i] *= lastKey; roundKeys[i].ShiftBitsRightInplace(); roundKeys[i] *= lastKey; roundKeys[i].ShiftBitsRightInplace(); roundKeys[i] *= lastKey; // Lastly, do apply some cell shifting, and other mutations roundKeys[i].ShiftCellsRightInplace(); roundKeys[i] += lastKey; roundKeys[i].ShiftColumnsRightInplace(); roundKeys[i] ^= lastKey; } return; } void Feistel::operator=(const Feistel& other) { roundKeys = other.roundKeys; return; } // These pragmas only work for MSVC and g++, as far as i know. Beware!!! #if defined _WIN32 || defined _WIN64 #pragma optimize("", off ) #elif defined __GNUG__ #pragma GCC push_options #pragma GCC optimize ("O0") #endif void Feistel::ZeroKeyMemory() { for (Key& key : roundKeys) { key.Reset(); } return; } #if defined _WIN32 || defined _WIN64 #pragma optimize("", on ) #elif defined __GNUG__ #pragma GCC pop_options #endif }