Indentation

This commit is contained in:
Leonetienne 2022-05-22 17:32:54 +02:00
parent 91819c9723
commit cd119f21bb
No known key found for this signature in database
GPG Key ID: C33879CD92E9708C
3 changed files with 217 additions and 217 deletions

View File

@ -13,79 +13,79 @@
#include "GCrypt/InitializationVector.h"
namespace Leonetienne::GCrypt {
//! Mod-operator that works with negative values
inline int Mod(const int numerator, const int denominator) {
return (denominator + (numerator % denominator)) % denominator;
}
//! Mod-operator that works with negative values
inline int Mod(const int numerator, const int denominator) {
return (denominator + (numerator % denominator)) % denominator;
}
//! Will perform a wrapping left-bitshift on a bitset
template <std::size_t T>
//! Will perform a wrapping left-bitshift on a bitset
template <std::size_t T>
inline SecureBitset<T> Shiftl(const SecureBitset<T>& bits, const std::size_t amount) {
std::stringstream ss;
const std::string bitss = bits.to_string();
std::stringstream ss;
const std::string bitss = bits.to_string();
for (std::size_t i = 0; i < bitss.size(); i++) {
ss << bitss[Mod((int)(i + amount), (int)bitss.size())];
}
for (std::size_t i = 0; i < bitss.size(); i++) {
ss << bitss[Mod((int)(i + amount), (int)bitss.size())];
}
return SecureBitset<T>(ss.str());
return SecureBitset<T>(ss.str());
}
//! Will perform a wrapping right-bitshift on a bitset
template <std::size_t T>
//! Will perform a wrapping right-bitshift on a bitset
template <std::size_t T>
inline SecureBitset<T> Shiftr(const SecureBitset<T>& bits, const std::size_t amount) {
std::stringstream ss;
const std::string bitss = bits.to_string();
std::stringstream ss;
const std::string bitss = bits.to_string();
for (std::size_t i = 0; i < bitss.size(); i++) {
ss << bitss[Mod((i - amount), bitss.size())];
}
for (std::size_t i = 0; i < bitss.size(); i++) {
ss << bitss[Mod((i - amount), bitss.size())];
}
return SecureBitset<T>(ss.str());
return SecureBitset<T>(ss.str());
}
//! Will pad a string to a set length with a certain character
std::string PadStringToLength(const std::string& str, const std::size_t len, const char pad, const bool padLeft = true);
//! Will pad a string to a set length with a certain character
std::string PadStringToLength(const std::string& str, const std::size_t len, const char pad, const bool padLeft = true);
//! Will convert a string to a fixed-size data block
//! @s: The string to pad
//! padLeft: should padding be added to the left? If not, to the right.
Block StringToBitblock(const std::string& s, bool padLeft = true);
//! Will convert a string to a fixed-size data block
//! @s: The string to pad
//! padLeft: should padding be added to the left? If not, to the right.
Block StringToBitblock(const std::string& s, bool padLeft = true);
//! Will convert a string to a flexible data block
Flexblock StringToBits(const std::string& s);
//! Will convert a string to a flexible data block
Flexblock StringToBits(const std::string& s);
//! Will convert a fixed-size data block to a bytestring
std::string BitblockToBytes(const Block& bits);
//! Will convert a fixed-size data block to a bytestring
std::string BitblockToBytes(const Block& bits);
//! Will convert a fixed-size data block to a string
//! The difference to BitblockToBytes() is, that it strips excess nullbytes
std::string BitblockToString(const Block& bits);
//! Will convert a fixed-size data block to a string
//! The difference to BitblockToBytes() is, that it strips excess nullbytes
std::string BitblockToString(const Block& bits);
//! Will convert a flexible data block to a bytestring
std::string BitsToBytes(const Flexblock& bits);
//! Will convert a flexible data block to a bytestring
std::string BitsToBytes(const Flexblock& bits);
//! Will convert a flexible data block to a string
//! The difference to BitsToBytes() is, that it strips excess nullbytes
std::string BitsToString(const Flexblock& bits);
//! Will convert a flexible data block to a string
//! The difference to BitsToBytes() is, that it strips excess nullbytes
std::string BitsToString(const Flexblock& bits);
//! Turns a fixed-size data block into a hex-string
std::string BitblockToHexstring(const Block& b);
//! Turns a fixed-size data block into a hex-string
std::string BitblockToHexstring(const Block& b);
//! Turns a flexible data block into a hex-string
std::string BitsToHexstring(const Flexblock& b);
//! Turns a flexible data block into a hex-string
std::string BitsToHexstring(const Flexblock& b);
//! Turns a hex string into a fixed-size data block
Block HexstringToBitblock(const std::string& hexstring);
//! Turns a hex string into a fixed-size data block
Block HexstringToBitblock(const std::string& hexstring);
//! Turns a hex string into a flexible data block
Flexblock HexstringToBits(const std::string& hexstring);
//! Turns a hex string into a flexible data block
Flexblock HexstringToBits(const std::string& hexstring);
//! Will read a file into a flexblock
Flexblock ReadFileToBits(const std::string& filepath);
//! Will read a file into a flexblock
Flexblock ReadFileToBits(const std::string& filepath);
//! Will save bits to a binary file
void WriteBitsToFile(const std::string& filepath, const Flexblock& bits);
//! Will save bits to a binary file
void WriteBitsToFile(const std::string& filepath, const Flexblock& bits);
}
#endif

View File

@ -6,238 +6,238 @@
namespace Leonetienne::GCrypt {
Feistel::Feistel(const Key& key) {
SetKey(key);
return;
SetKey(key);
return;
}
Feistel::~Feistel() {
ZeroKeyMemory();
ZeroKeyMemory();
return;
return;
}
void Feistel::SetKey(const Key& key) {
GenerateRoundKeys(key);
return;
GenerateRoundKeys(key);
return;
}
Block Feistel::Encipher(const Block& data) {
return Run(data, false);
return Run(data, false);
}
Block Feistel::Decipher(const Block& data) {
return Run(data, true);
return Run(data, true);
}
Block Feistel::Run(const Block& data, bool reverseKeys) {
const auto splitData = FeistelSplit(data);
Halfblock l = splitData.first;
Halfblock r = splitData.second;
const auto splitData = FeistelSplit(data);
Halfblock l = splitData.first;
Halfblock r = splitData.second;
Halfblock tmp;
Halfblock tmp;
for (std::size_t i = 0; i < N_ROUNDS; i++) {
// Calculate key index
std::size_t keyIndex;
if (reverseKeys) {
keyIndex = N_ROUNDS - i - 1;
}
else {
keyIndex = i;
}
// Do a feistel round
tmp = r;
r = l ^ F(r, roundKeys[keyIndex]);
l = tmp;
for (std::size_t i = 0; i < N_ROUNDS; i++) {
// Calculate key index
std::size_t keyIndex;
if (reverseKeys) {
keyIndex = N_ROUNDS - i - 1;
}
else {
keyIndex = i;
}
// Block has finished de*ciphering.
// Let's generate a new set of round keys.
GenerateRoundKeys((Block)roundKeys.back());
// Do a feistel round
tmp = r;
r = l ^ F(r, roundKeys[keyIndex]);
l = tmp;
}
return FeistelCombine(r, l);
// Block has finished de*ciphering.
// Let's generate a new set of round keys.
GenerateRoundKeys((Block)roundKeys.back());
return FeistelCombine(r, l);
}
Halfblock Feistel::F(Halfblock m, const Key& key) {
// Made-up F function
// Made-up F function
// Expand to full bitwidth
Block m_expanded = ExpansionFunction(m);
// Expand to full bitwidth
Block m_expanded = ExpansionFunction(m);
// Shift to left by 1
m_expanded = Shiftl(m_expanded, 1);
// Shift to left by 1
m_expanded = Shiftl(m_expanded, 1);
// Xor with key
m_expanded ^= key;
// Xor with key
m_expanded ^= key;
// Non-linearly apply subsitution boxes
std::stringstream ss;
const std::string m_str = m_expanded.to_string();
// Non-linearly apply subsitution boxes
std::stringstream ss;
const std::string m_str = m_expanded.to_string();
for (std::size_t i = 0; i < BLOCK_SIZE; i += 4) {
ss << SBox(m_str.substr(i, 4));
}
for (std::size_t i = 0; i < BLOCK_SIZE; i += 4) {
ss << SBox(m_str.substr(i, 4));
}
m_expanded = Block(ss.str());
m_expanded = Block(ss.str());
// Return the compressed version
return CompressionFunction(m_expanded);
// Return the compressed version
return CompressionFunction(m_expanded);
}
std::pair<Halfblock, Halfblock> Feistel::FeistelSplit(const Block& block) {
const std::string bits = block.to_string();
const std::string bits = block.to_string();
Halfblock l(bits.substr(0, bits.size() / 2));
Halfblock r(bits.substr(bits.size() / 2));
Halfblock l(bits.substr(0, bits.size() / 2));
Halfblock r(bits.substr(bits.size() / 2));
return std::make_pair(l, r);
return std::make_pair(l, r);
}
Block Feistel::FeistelCombine(const Halfblock& l, const Halfblock& r) {
return Block(l.to_string() + r.to_string());
return Block(l.to_string() + r.to_string());
}
Block Feistel::ExpansionFunction(const Halfblock& block) {
std::stringstream ss;
const std::string bits = block.to_string();
std::stringstream ss;
const std::string bits = block.to_string();
std::unordered_map<std::string, std::string> expansionMap;
expansionMap["00"] = "1101";
expansionMap["01"] = "1000";
expansionMap["10"] = "0010";
expansionMap["11"] = "0111";
std::unordered_map<std::string, std::string> expansionMap;
expansionMap["00"] = "1101";
expansionMap["01"] = "1000";
expansionMap["10"] = "0010";
expansionMap["11"] = "0111";
// We have to double the bits!
for (std::size_t i = 0; i < HALFBLOCK_SIZE; i += 2) {
const std::string sub = bits.substr(i, 2);
ss << expansionMap[sub];
}
// We have to double the bits!
for (std::size_t i = 0; i < HALFBLOCK_SIZE; i += 2) {
const std::string sub = bits.substr(i, 2);
ss << expansionMap[sub];
}
return Block(ss.str());
return Block(ss.str());
}
Halfblock Feistel::CompressionFunction(const Block& block) {
std::stringstream ss;
const std::string bits = block.to_string();
std::stringstream ss;
const std::string bits = block.to_string();
std::unordered_map<std::string, std::string> compressionMap;
compressionMap["0000"] = "10";
compressionMap["0001"] = "01";
compressionMap["0010"] = "10";
compressionMap["0011"] = "10";
compressionMap["0100"] = "11";
compressionMap["0101"] = "01";
compressionMap["0110"] = "00";
compressionMap["0111"] = "11";
compressionMap["1000"] = "01";
compressionMap["1001"] = "00";
compressionMap["1010"] = "11";
compressionMap["1011"] = "00";
compressionMap["1100"] = "11";
compressionMap["1101"] = "10";
compressionMap["1110"] = "00";
compressionMap["1111"] = "01";
std::unordered_map<std::string, std::string> compressionMap;
compressionMap["0000"] = "10";
compressionMap["0001"] = "01";
compressionMap["0010"] = "10";
compressionMap["0011"] = "10";
compressionMap["0100"] = "11";
compressionMap["0101"] = "01";
compressionMap["0110"] = "00";
compressionMap["0111"] = "11";
compressionMap["1000"] = "01";
compressionMap["1001"] = "00";
compressionMap["1010"] = "11";
compressionMap["1011"] = "00";
compressionMap["1100"] = "11";
compressionMap["1101"] = "10";
compressionMap["1110"] = "00";
compressionMap["1111"] = "01";
// We have to half the bits!
for (std::size_t i = 0; i < BLOCK_SIZE; i += 4) {
const std::string sub = bits.substr(i, 4);
ss << compressionMap[sub];
}
// We have to half the bits!
for (std::size_t i = 0; i < BLOCK_SIZE; i += 4) {
const std::string sub = bits.substr(i, 4);
ss << compressionMap[sub];
}
return Halfblock(ss.str());
return Halfblock(ss.str());
}
std::string Feistel::SBox(const std::string& in) {
static std::unordered_map<std::string, std::string> subMap;
static bool mapInitialized = false;
if (!mapInitialized) {
subMap["0000"] = "1100";
subMap["0001"] = "1000";
subMap["0010"] = "0001";
subMap["0011"] = "0111";
subMap["0100"] = "1011";
subMap["0101"] = "0011";
subMap["0110"] = "1101";
subMap["0111"] = "1111";
subMap["1000"] = "0000";
subMap["1001"] = "1010";
subMap["1010"] = "0100";
subMap["1011"] = "1001";
subMap["1100"] = "0010";
subMap["1101"] = "1110";
subMap["1110"] = "0101";
subMap["1111"] = "0110";
mapInitialized = true;
}
static std::unordered_map<std::string, std::string> subMap;
static bool mapInitialized = false;
if (!mapInitialized) {
subMap["0000"] = "1100";
subMap["0001"] = "1000";
subMap["0010"] = "0001";
subMap["0011"] = "0111";
subMap["0100"] = "1011";
subMap["0101"] = "0011";
subMap["0110"] = "1101";
subMap["0111"] = "1111";
subMap["1000"] = "0000";
subMap["1001"] = "1010";
subMap["1010"] = "0100";
subMap["1011"] = "1001";
subMap["1100"] = "0010";
subMap["1101"] = "1110";
subMap["1110"] = "0101";
subMap["1111"] = "0110";
mapInitialized = true;
}
return subMap[in];
return subMap[in];
}
void Feistel::GenerateRoundKeys(const Key& seedKey) {
// Clear initial key memory
ZeroKeyMemory();
roundKeys = Keyset();
// Clear initial key memory
ZeroKeyMemory();
roundKeys = Keyset();
// Derive the initial two round keys
// Derive the initial two round keys
// Compress- substitute, and expand the seed key to form the initial and the second-initial round key
// This action is non-linear and irreversible, and thus strenghtens security.
Halfblock compressedSeed1 = CompressionFunction(seedKey);
Halfblock compressedSeed2 = CompressionFunction(Shiftl(seedKey, 1)); // Shifting one key by 1 will result in a completely different compression
// Compress- substitute, and expand the seed key to form the initial and the second-initial round key
// This action is non-linear and irreversible, and thus strenghtens security.
Halfblock compressedSeed1 = CompressionFunction(seedKey);
Halfblock compressedSeed2 = CompressionFunction(Shiftl(seedKey, 1)); // Shifting one key by 1 will result in a completely different compression
// To add further confusion, let's shift seed1 by 1 aswell (after compression, but before substitution)
// but only if the total number of bits set are a multiple of 3
// if it is a multiple of 4, we'll shift it by 1 into the opposite direction
const std::size_t setBits1 = compressedSeed1.count();
// To add further confusion, let's shift seed1 by 1 aswell (after compression, but before substitution)
// but only if the total number of bits set are a multiple of 3
// if it is a multiple of 4, we'll shift it by 1 into the opposite direction
const std::size_t setBits1 = compressedSeed1.count();
if (setBits1 % 4 == 0) {
compressedSeed1 = Shiftr(compressedSeed1, 1);
}
else if (setBits1 % 3 == 0) {
compressedSeed1 = Shiftl(compressedSeed1, 1);
}
if (setBits1 % 4 == 0) {
compressedSeed1 = Shiftr(compressedSeed1, 1);
}
else if (setBits1 % 3 == 0) {
compressedSeed1 = Shiftl(compressedSeed1, 1);
}
// Now apply substitution
std::stringstream ssKey1;
std::stringstream ssKey2;
const std::string bitsKey1 = compressedSeed1.to_string();
const std::string bitsKey2 = compressedSeed2.to_string();
// Now apply substitution
std::stringstream ssKey1;
std::stringstream ssKey2;
const std::string bitsKey1 = compressedSeed1.to_string();
const std::string bitsKey2 = compressedSeed2.to_string();
for (std::size_t i = 0; i < HALFBLOCK_SIZE; i += 4) {
ssKey1 << SBox(bitsKey1.substr(i, 4));
ssKey2 << SBox(bitsKey2.substr(i, 4));
}
for (std::size_t i = 0; i < HALFBLOCK_SIZE; i += 4) {
ssKey1 << SBox(bitsKey1.substr(i, 4));
ssKey2 << SBox(bitsKey2.substr(i, 4));
}
compressedSeed1 = Halfblock(ssKey1.str());
compressedSeed2 = Halfblock(ssKey2.str());
compressedSeed1 = Halfblock(ssKey1.str());
compressedSeed2 = Halfblock(ssKey2.str());
// Now extrapolate them to BLOCK_SIZE (key size) again
// Xor with the original seed key to get rid of the repititions caused by the expansion
roundKeys[0] = ExpansionFunction(compressedSeed1) ^ seedKey;
roundKeys[1] = ExpansionFunction(compressedSeed2) ^ seedKey;
// Now extrapolate them to BLOCK_SIZE (key size) again
// Xor with the original seed key to get rid of the repititions caused by the expansion
roundKeys[0] = ExpansionFunction(compressedSeed1) ^ seedKey;
roundKeys[1] = ExpansionFunction(compressedSeed2) ^ seedKey;
// Now derive all other round keys
// Now derive all other round keys
for (std::size_t i = 2; i < roundKeys.size(); i++) {
// Initialize new round key with last round key
Block newKey = roundKeys[i - 1];
for (std::size_t i = 2; i < roundKeys.size(); i++) {
// Initialize new round key with last round key
Block newKey = roundKeys[i - 1];
// Shift to left by how many bits are set, modulo 8
newKey = Shiftl(newKey, newKey.count() % 8); // This action is irreversible
// Shift to left by how many bits are set, modulo 8
newKey = Shiftl(newKey, newKey.count() % 8); // This action is irreversible
// Split into two halfblocks,
// apply F() to one halfblock with rk[i-2],
// xor the other one with it
// and put them back together
auto halfkeys = FeistelSplit(newKey);
Halfblock halfkey1 = F(halfkeys.first, roundKeys[i - 2]);
Halfblock halfkey2 = halfkeys.second ^ halfkey1; // I know this is reversible, but it helps to diffuse future round keys.
// Split into two halfblocks,
// apply F() to one halfblock with rk[i-2],
// xor the other one with it
// and put them back together
auto halfkeys = FeistelSplit(newKey);
Halfblock halfkey1 = F(halfkeys.first, roundKeys[i - 2]);
Halfblock halfkey2 = halfkeys.second ^ halfkey1; // I know this is reversible, but it helps to diffuse future round keys.
roundKeys[i] = Key(FeistelCombine(halfkey1, halfkey2));
}
roundKeys[i] = Key(FeistelCombine(halfkey1, halfkey2));
}
return;
return;
}
void Feistel::operator=(const Feistel& other) {
@ -254,11 +254,11 @@ namespace Leonetienne::GCrypt {
#pragma GCC optimize ("O0")
#endif
void Feistel::ZeroKeyMemory() {
for (Key& key : roundKeys) {
key.reset();
}
for (Key& key : roundKeys) {
key.reset();
}
return;
return;
}
#if defined _WIN32 || defined _WIN64
#pragma optimize("", on )

View File

@ -7,11 +7,11 @@
namespace Leonetienne::GCrypt {
GCipher::GCipher(const Key& key, const DIRECTION direction)
:
GCipher::GCipher(const Key& key, const DIRECTION direction) :
direction { direction },
lastBlock(InitializationVector(key)), // Initialize our lastBlock with some deterministic initial value, based on the key
feistel(key) {
feistel(key)
{
return;
}