Gcryptlib: new brace style, and moved to Leonetienne namespace
This commit is contained in:
parent
c551f5fa64
commit
acf9dea387
@ -4,7 +4,7 @@
|
||||
#include <Util.h>
|
||||
#include <InitializationVector.h>
|
||||
|
||||
using namespace GhettoCipher;
|
||||
using namespace Leonetienne::GCrypt;
|
||||
|
||||
void ExampleString() {
|
||||
std::cout << "Example on how to encrypt & decrypt a string:" << std::endl;
|
||||
|
@ -2,7 +2,7 @@
|
||||
#include "SecureBitset.h"
|
||||
#include "Config.h"
|
||||
|
||||
namespace GhettoCipher {
|
||||
namespace Leonetienne::GCrypt {
|
||||
typedef SecureBitset<BLOCK_SIZE> Block;
|
||||
}
|
||||
|
||||
|
@ -2,7 +2,7 @@
|
||||
#include "Feistel.h"
|
||||
#include "Flexblock.h"
|
||||
|
||||
namespace GhettoCipher {
|
||||
namespace Leonetienne::GCrypt {
|
||||
/** Class to apply a block cipher to messages of arbitrary length in a distributed manner
|
||||
*/
|
||||
class Cipher {
|
||||
|
@ -1,7 +1,7 @@
|
||||
#pragma once
|
||||
#include <cstddef>
|
||||
|
||||
namespace GhettoCipher {
|
||||
namespace Leonetienne::GCrypt {
|
||||
// MUST BE A POWER OF 2 > 4
|
||||
constexpr std::size_t BLOCK_SIZE = 512;
|
||||
|
||||
|
@ -3,7 +3,7 @@
|
||||
#include "Block.h"
|
||||
#include "Halfblock.h"
|
||||
|
||||
namespace GhettoCipher {
|
||||
namespace Leonetienne::GCrypt {
|
||||
/** Class to perform a feistel block chipher
|
||||
*/
|
||||
class Feistel {
|
||||
|
@ -1,7 +1,7 @@
|
||||
#pragma once
|
||||
#include <string>
|
||||
|
||||
namespace GhettoCipher {
|
||||
namespace Leonetienne::GCrypt {
|
||||
//! A "bitset" of variable length
|
||||
typedef std::string Flexblock;
|
||||
}
|
||||
|
@ -1,9 +1,9 @@
|
||||
#pragma once
|
||||
#include <string>
|
||||
|
||||
namespace GhettoCipher {
|
||||
namespace Leonetienne::GCrypt {
|
||||
/** This class is a wrapper to make working with the GhettoCipher
|
||||
* super easy with a python-like syntax
|
||||
* super easy with a python-like syntax
|
||||
*/
|
||||
class GhettoCryptWrapper {
|
||||
public:
|
||||
|
@ -3,7 +3,7 @@
|
||||
#include <cstdint>
|
||||
#include "Config.h"
|
||||
|
||||
namespace GhettoCipher {
|
||||
namespace Leonetienne::GCrypt {
|
||||
constexpr std::size_t HALFBLOCK_SIZE = (BLOCK_SIZE / 2);
|
||||
typedef SecureBitset<HALFBLOCK_SIZE> Halfblock;
|
||||
}
|
||||
|
@ -2,16 +2,16 @@
|
||||
#include "Config.h"
|
||||
#include "Block.h"
|
||||
|
||||
namespace GhettoCipher {
|
||||
namespace Leonetienne::GCrypt {
|
||||
/** Will create a sudo-random Block based on a seed
|
||||
*/
|
||||
class InitializationVector {
|
||||
public:
|
||||
InitializationVector(const GhettoCipher::Block& seed);
|
||||
InitializationVector(const Block& seed);
|
||||
|
||||
operator GhettoCipher::Block() const;
|
||||
operator Block() const;
|
||||
|
||||
private:
|
||||
GhettoCipher::Block iv;
|
||||
Block iv;
|
||||
};
|
||||
}
|
||||
|
@ -3,6 +3,6 @@
|
||||
#include "Block.h"
|
||||
#include "Config.h"
|
||||
|
||||
namespace GhettoCipher {
|
||||
namespace Leonetienne::GCrypt {
|
||||
typedef std::array<Block, N_ROUNDS> Keyset;
|
||||
}
|
||||
|
@ -3,7 +3,7 @@
|
||||
#include <ostream>
|
||||
#include <istream>
|
||||
|
||||
namespace GhettoCipher {
|
||||
namespace Leonetienne::GCrypt {
|
||||
/** Wrapper for std::bitset<T> that zeroes memory upon deletion.
|
||||
* This does not include ALL methods, but the ones needed.
|
||||
*
|
||||
|
@ -10,7 +10,7 @@
|
||||
#include "Cipher.h"
|
||||
#include "InitializationVector.h"
|
||||
|
||||
namespace GhettoCipher {
|
||||
namespace Leonetienne::GCrypt {
|
||||
//! Mod-operator that works with negative values
|
||||
inline int Mod(const int numerator, const int denominator) {
|
||||
return (denominator + (numerator % denominator)) % denominator;
|
||||
|
@ -4,128 +4,132 @@
|
||||
#include "Util.h"
|
||||
#include "InitializationVector.h"
|
||||
|
||||
GhettoCipher::Cipher::Cipher(const Block& key)
|
||||
:
|
||||
key { key },
|
||||
initializationVector(InitializationVector(key)) {
|
||||
namespace Leonetienne::GCrypt {
|
||||
|
||||
return;
|
||||
}
|
||||
Cipher::Cipher(const Block& key)
|
||||
:
|
||||
key { key },
|
||||
initializationVector(InitializationVector(key)) {
|
||||
|
||||
GhettoCipher::Cipher::Cipher(const std::string& password)
|
||||
:
|
||||
key { PasswordToKey(password) },
|
||||
initializationVector(InitializationVector(key)) {
|
||||
return;
|
||||
}
|
||||
|
||||
GhettoCipher::Cipher::~Cipher() {
|
||||
// Clear key memory
|
||||
ZeroKeyMemory();
|
||||
|
||||
return;
|
||||
}
|
||||
|
||||
void GhettoCipher::Cipher::SetKey(const Block& key) {
|
||||
ZeroKeyMemory();
|
||||
|
||||
this->key = key;
|
||||
return;
|
||||
}
|
||||
|
||||
void GhettoCipher::Cipher::SetPassword(const std::string& password) {
|
||||
ZeroKeyMemory();
|
||||
|
||||
key = PasswordToKey(password);
|
||||
return;
|
||||
}
|
||||
|
||||
GhettoCipher::Flexblock GhettoCipher::Cipher::Encipher(const Flexblock& data, bool printProgress) const {
|
||||
// Split cleartext into blocks
|
||||
std::vector<Block> blocks;
|
||||
|
||||
for (std::size_t i = 0; i < data.size(); i += BLOCK_SIZE) {
|
||||
blocks.push_back(Block(
|
||||
PadStringToLength(data.substr(i, BLOCK_SIZE), BLOCK_SIZE, '0', false))
|
||||
);
|
||||
return;
|
||||
}
|
||||
|
||||
// Encrypt individual blocks using cipher block chaining
|
||||
Feistel feistel(key);
|
||||
Cipher::Cipher(const std::string& password)
|
||||
:
|
||||
key { PasswordToKey(password) },
|
||||
initializationVector(InitializationVector(key)) {
|
||||
return;
|
||||
}
|
||||
|
||||
for (std::size_t i = 0; i < blocks.size(); i++) {
|
||||
// Print reports if desired. If we have > 1000 blocks, print one report every 100 blocks. Otherwise for every 10th block.
|
||||
if ((i % ((blocks.size() > 1000)? 100 : 10) == 0) && (printProgress)) {
|
||||
std::cout << "Encrypting... (Block " << i << " / " << blocks.size() << " - " << ((float)i*100 / blocks.size()) << "%)" << std::endl;
|
||||
Cipher::~Cipher() {
|
||||
// Clear key memory
|
||||
ZeroKeyMemory();
|
||||
|
||||
return;
|
||||
}
|
||||
|
||||
void Cipher::SetKey(const Block& key) {
|
||||
ZeroKeyMemory();
|
||||
|
||||
this->key = key;
|
||||
return;
|
||||
}
|
||||
|
||||
void Cipher::SetPassword(const std::string& password) {
|
||||
ZeroKeyMemory();
|
||||
|
||||
key = PasswordToKey(password);
|
||||
return;
|
||||
}
|
||||
|
||||
Flexblock Cipher::Encipher(const Flexblock& data, bool printProgress) const {
|
||||
// Split cleartext into blocks
|
||||
std::vector<Block> blocks;
|
||||
|
||||
for (std::size_t i = 0; i < data.size(); i += BLOCK_SIZE) {
|
||||
blocks.push_back(Block(
|
||||
PadStringToLength(data.substr(i, BLOCK_SIZE), BLOCK_SIZE, '0', false))
|
||||
);
|
||||
}
|
||||
|
||||
const Block& lastBlock = (i>0) ? blocks[i-1] : initializationVector;
|
||||
blocks[i] = feistel.Encipher(blocks[i] ^ lastBlock); // Xor last cipher block with new clear text block before E()
|
||||
}
|
||||
// Encrypt individual blocks using cipher block chaining
|
||||
Feistel feistel(key);
|
||||
|
||||
// Concatenate ciphertext blocks back into a flexblock
|
||||
std::stringstream ss;
|
||||
for (Block& b : blocks) {
|
||||
ss << b;
|
||||
}
|
||||
for (std::size_t i = 0; i < blocks.size(); i++) {
|
||||
// Print reports if desired. If we have > 1000 blocks, print one report every 100 blocks. Otherwise for every 10th block.
|
||||
if ((i % ((blocks.size() > 1000)? 100 : 10) == 0) && (printProgress)) {
|
||||
std::cout << "Encrypting... (Block " << i << " / " << blocks.size() << " - " << ((float)i*100 / blocks.size()) << "%)" << std::endl;
|
||||
}
|
||||
|
||||
// Return it
|
||||
return ss.str();
|
||||
}
|
||||
|
||||
GhettoCipher::Flexblock GhettoCipher::Cipher::Decipher(const Flexblock& data, bool printProgress) const {
|
||||
// Split ciphertext into blocks
|
||||
std::vector<Block> blocks;
|
||||
|
||||
for (std::size_t i = 0; i < data.size(); i += BLOCK_SIZE) {
|
||||
blocks.push_back(Block(
|
||||
PadStringToLength(data.substr(i, BLOCK_SIZE), BLOCK_SIZE, '0', false))
|
||||
);
|
||||
}
|
||||
|
||||
// Decrypt individual blocks
|
||||
Feistel feistel(key);
|
||||
|
||||
// We can't do this in-loop for decryption, because we are decrypting the blocks in-place.
|
||||
Block lastBlock = initializationVector;
|
||||
|
||||
for (std::size_t i = 0; i < blocks.size(); i++) {
|
||||
// Print reports if desired. If we have > 1000 blocks, print one report every 100 blocks. Otherwise for every 10th block.
|
||||
if ((i % ((blocks.size() > 1000) ? 100 : 10) == 0) && (printProgress)) {
|
||||
std::cout << "Decrypting... (Block " << i << " / " << blocks.size() << " - " << ((float)i*100/ blocks.size()) << "%)" << std::endl;
|
||||
const Block& lastBlock = (i>0) ? blocks[i-1] : initializationVector;
|
||||
blocks[i] = feistel.Encipher(blocks[i] ^ lastBlock); // Xor last cipher block with new clear text block before E()
|
||||
}
|
||||
|
||||
Block tmpCopy = blocks[i];
|
||||
// Concatenate ciphertext blocks back into a flexblock
|
||||
std::stringstream ss;
|
||||
for (Block& b : blocks) {
|
||||
ss << b;
|
||||
}
|
||||
|
||||
blocks[i] = feistel.Decipher(blocks[i]) ^ lastBlock; // Decipher cipher block [i] and then xor it with the last cipher block [i-1] we've had
|
||||
|
||||
lastBlock = std::move(tmpCopy);
|
||||
// Return it
|
||||
return ss.str();
|
||||
}
|
||||
|
||||
// Concatenate ciphertext blocks back into a flexblock
|
||||
std::stringstream ss;
|
||||
for (Block& b : blocks) {
|
||||
ss << b;
|
||||
Flexblock Cipher::Decipher(const Flexblock& data, bool printProgress) const {
|
||||
// Split ciphertext into blocks
|
||||
std::vector<Block> blocks;
|
||||
|
||||
for (std::size_t i = 0; i < data.size(); i += BLOCK_SIZE) {
|
||||
blocks.push_back(Block(
|
||||
PadStringToLength(data.substr(i, BLOCK_SIZE), BLOCK_SIZE, '0', false))
|
||||
);
|
||||
}
|
||||
|
||||
// Decrypt individual blocks
|
||||
Feistel feistel(key);
|
||||
|
||||
// We can't do this in-loop for decryption, because we are decrypting the blocks in-place.
|
||||
Block lastBlock = initializationVector;
|
||||
|
||||
for (std::size_t i = 0; i < blocks.size(); i++) {
|
||||
// Print reports if desired. If we have > 1000 blocks, print one report every 100 blocks. Otherwise for every 10th block.
|
||||
if ((i % ((blocks.size() > 1000) ? 100 : 10) == 0) && (printProgress)) {
|
||||
std::cout << "Decrypting... (Block " << i << " / " << blocks.size() << " - " << ((float)i*100/ blocks.size()) << "%)" << std::endl;
|
||||
}
|
||||
|
||||
Block tmpCopy = blocks[i];
|
||||
|
||||
blocks[i] = feistel.Decipher(blocks[i]) ^ lastBlock; // Decipher cipher block [i] and then xor it with the last cipher block [i-1] we've had
|
||||
|
||||
lastBlock = std::move(tmpCopy);
|
||||
}
|
||||
|
||||
// Concatenate ciphertext blocks back into a flexblock
|
||||
std::stringstream ss;
|
||||
for (Block& b : blocks) {
|
||||
ss << b;
|
||||
}
|
||||
|
||||
// Return it
|
||||
return ss.str();
|
||||
}
|
||||
|
||||
// Return it
|
||||
return ss.str();
|
||||
}
|
||||
|
||||
// These pragmas only work for MSVC and g++, as far as i know. Beware!!!
|
||||
// These pragmas only work for MSVC and g++, as far as i know. Beware!!!
|
||||
#if defined _WIN32 || defined _WIN64
|
||||
#pragma optimize("", off )
|
||||
#elif defined __GNUG__
|
||||
#pragma GCC push_options
|
||||
#pragma GCC optimize ("O0")
|
||||
#endif
|
||||
void GhettoCipher::Cipher::ZeroKeyMemory() {
|
||||
key.reset();
|
||||
return;
|
||||
}
|
||||
void Cipher::ZeroKeyMemory() {
|
||||
key.reset();
|
||||
return;
|
||||
}
|
||||
#if defined _WIN32 || defined _WIN64
|
||||
#pragma optimize("", on )
|
||||
#elif defined __GNUG__
|
||||
#pragma GCC pop_options
|
||||
#endif
|
||||
|
||||
}
|
||||
|
||||
|
@ -3,258 +3,262 @@
|
||||
#include "Util.h"
|
||||
#include "Config.h"
|
||||
|
||||
GhettoCipher::Feistel::Feistel(const Block& key) {
|
||||
SetKey(key);
|
||||
return;
|
||||
}
|
||||
namespace Leonetienne::GCrypt {
|
||||
|
||||
GhettoCipher::Feistel::~Feistel() {
|
||||
ZeroKeyMemory();
|
||||
Feistel::Feistel(const Block& key) {
|
||||
SetKey(key);
|
||||
return;
|
||||
}
|
||||
|
||||
return;
|
||||
}
|
||||
Feistel::~Feistel() {
|
||||
ZeroKeyMemory();
|
||||
|
||||
void GhettoCipher::Feistel::SetKey(const Block& key) {
|
||||
GenerateRoundKeys(key);
|
||||
return;
|
||||
}
|
||||
return;
|
||||
}
|
||||
|
||||
GhettoCipher::Block GhettoCipher::Feistel::Encipher(const Block& data) {
|
||||
return Run(data, false);
|
||||
}
|
||||
void Feistel::SetKey(const Block& key) {
|
||||
GenerateRoundKeys(key);
|
||||
return;
|
||||
}
|
||||
|
||||
GhettoCipher::Block GhettoCipher::Feistel::Decipher(const Block& data) {
|
||||
return Run(data, true);
|
||||
}
|
||||
Block Feistel::Encipher(const Block& data) {
|
||||
return Run(data, false);
|
||||
}
|
||||
|
||||
GhettoCipher::Block GhettoCipher::Feistel::Run(const Block& data, bool reverseKeys) {
|
||||
const auto splitData = FeistelSplit(data);
|
||||
GhettoCipher::Halfblock l = splitData.first;
|
||||
GhettoCipher::Halfblock r = splitData.second;
|
||||
Block Feistel::Decipher(const Block& data) {
|
||||
return Run(data, true);
|
||||
}
|
||||
|
||||
Halfblock tmp;
|
||||
Block Feistel::Run(const Block& data, bool reverseKeys) {
|
||||
const auto splitData = FeistelSplit(data);
|
||||
Halfblock l = splitData.first;
|
||||
Halfblock r = splitData.second;
|
||||
|
||||
for (std::size_t i = 0; i < N_ROUNDS; i++) {
|
||||
// Calculate key index
|
||||
std::size_t keyIndex;
|
||||
if (reverseKeys) {
|
||||
keyIndex = N_ROUNDS - i - 1;
|
||||
}
|
||||
else {
|
||||
keyIndex = i;
|
||||
}
|
||||
Halfblock tmp;
|
||||
|
||||
// Do a feistel round
|
||||
tmp = r;
|
||||
r = l ^ F(r, roundKeys[keyIndex]);
|
||||
l = tmp;
|
||||
}
|
||||
for (std::size_t i = 0; i < N_ROUNDS; i++) {
|
||||
// Calculate key index
|
||||
std::size_t keyIndex;
|
||||
if (reverseKeys) {
|
||||
keyIndex = N_ROUNDS - i - 1;
|
||||
}
|
||||
else {
|
||||
keyIndex = i;
|
||||
}
|
||||
|
||||
// Block has finished de*ciphering.
|
||||
// Let's generate a new set of round keys.
|
||||
GenerateRoundKeys((Block)roundKeys.back());
|
||||
// Do a feistel round
|
||||
tmp = r;
|
||||
r = l ^ F(r, roundKeys[keyIndex]);
|
||||
l = tmp;
|
||||
}
|
||||
|
||||
return FeistelCombine(r, l);
|
||||
}
|
||||
// Block has finished de*ciphering.
|
||||
// Let's generate a new set of round keys.
|
||||
GenerateRoundKeys((Block)roundKeys.back());
|
||||
|
||||
GhettoCipher::Halfblock GhettoCipher::Feistel::F(Halfblock m, const Block& key) {
|
||||
// Made-up F function
|
||||
return FeistelCombine(r, l);
|
||||
}
|
||||
|
||||
// Expand to full bitwidth
|
||||
Block m_expanded = ExpansionFunction(m);
|
||||
Halfblock Feistel::F(Halfblock m, const Block& key) {
|
||||
// Made-up F function
|
||||
|
||||
// Shift to left by 1
|
||||
m_expanded = Shiftl(m_expanded, 1);
|
||||
// Expand to full bitwidth
|
||||
Block m_expanded = ExpansionFunction(m);
|
||||
|
||||
// Xor with key
|
||||
m_expanded ^= key;
|
||||
// Shift to left by 1
|
||||
m_expanded = Shiftl(m_expanded, 1);
|
||||
|
||||
// Non-linearly apply subsitution boxes
|
||||
std::stringstream ss;
|
||||
const std::string m_str = m_expanded.to_string();
|
||||
// Xor with key
|
||||
m_expanded ^= key;
|
||||
|
||||
for (std::size_t i = 0; i < BLOCK_SIZE; i += 4) {
|
||||
ss << SBox(m_str.substr(i, 4));
|
||||
}
|
||||
// Non-linearly apply subsitution boxes
|
||||
std::stringstream ss;
|
||||
const std::string m_str = m_expanded.to_string();
|
||||
|
||||
m_expanded = Block(ss.str());
|
||||
for (std::size_t i = 0; i < BLOCK_SIZE; i += 4) {
|
||||
ss << SBox(m_str.substr(i, 4));
|
||||
}
|
||||
|
||||
// Return the compressed version
|
||||
return CompressionFunction(m_expanded);
|
||||
}
|
||||
m_expanded = Block(ss.str());
|
||||
|
||||
std::pair<GhettoCipher::Halfblock, GhettoCipher::Halfblock> GhettoCipher::Feistel::FeistelSplit(const Block& block) {
|
||||
const std::string bits = block.to_string();
|
||||
// Return the compressed version
|
||||
return CompressionFunction(m_expanded);
|
||||
}
|
||||
|
||||
Halfblock l(bits.substr(0, bits.size() / 2));
|
||||
Halfblock r(bits.substr(bits.size() / 2));
|
||||
std::pair<Halfblock, Halfblock> Feistel::FeistelSplit(const Block& block) {
|
||||
const std::string bits = block.to_string();
|
||||
|
||||
return std::make_pair(l, r);
|
||||
}
|
||||
Halfblock l(bits.substr(0, bits.size() / 2));
|
||||
Halfblock r(bits.substr(bits.size() / 2));
|
||||
|
||||
GhettoCipher::Block GhettoCipher::Feistel::FeistelCombine(const Halfblock& l, const Halfblock& r) {
|
||||
return Block(l.to_string() + r.to_string());
|
||||
}
|
||||
return std::make_pair(l, r);
|
||||
}
|
||||
|
||||
GhettoCipher::Block GhettoCipher::Feistel::ExpansionFunction(const Halfblock& block) {
|
||||
std::stringstream ss;
|
||||
const std::string bits = block.to_string();
|
||||
Block Feistel::FeistelCombine(const Halfblock& l, const Halfblock& r) {
|
||||
return Block(l.to_string() + r.to_string());
|
||||
}
|
||||
|
||||
std::unordered_map<std::string, std::string> expansionMap;
|
||||
expansionMap["00"] = "1101";
|
||||
expansionMap["01"] = "1000";
|
||||
expansionMap["10"] = "0010";
|
||||
expansionMap["11"] = "0111";
|
||||
Block Feistel::ExpansionFunction(const Halfblock& block) {
|
||||
std::stringstream ss;
|
||||
const std::string bits = block.to_string();
|
||||
|
||||
// We have to double the bits!
|
||||
for (std::size_t i = 0; i < HALFBLOCK_SIZE; i += 2) {
|
||||
const std::string sub = bits.substr(i, 2);
|
||||
ss << expansionMap[sub];
|
||||
}
|
||||
std::unordered_map<std::string, std::string> expansionMap;
|
||||
expansionMap["00"] = "1101";
|
||||
expansionMap["01"] = "1000";
|
||||
expansionMap["10"] = "0010";
|
||||
expansionMap["11"] = "0111";
|
||||
|
||||
return Block(ss.str());
|
||||
}
|
||||
// We have to double the bits!
|
||||
for (std::size_t i = 0; i < HALFBLOCK_SIZE; i += 2) {
|
||||
const std::string sub = bits.substr(i, 2);
|
||||
ss << expansionMap[sub];
|
||||
}
|
||||
|
||||
GhettoCipher::Halfblock GhettoCipher::Feistel::CompressionFunction(const Block& block) {
|
||||
std::stringstream ss;
|
||||
const std::string bits = block.to_string();
|
||||
return Block(ss.str());
|
||||
}
|
||||
|
||||
std::unordered_map<std::string, std::string> compressionMap;
|
||||
compressionMap["0000"] = "10";
|
||||
compressionMap["0001"] = "01";
|
||||
compressionMap["0010"] = "10";
|
||||
compressionMap["0011"] = "10";
|
||||
compressionMap["0100"] = "11";
|
||||
compressionMap["0101"] = "01";
|
||||
compressionMap["0110"] = "00";
|
||||
compressionMap["0111"] = "11";
|
||||
compressionMap["1000"] = "01";
|
||||
compressionMap["1001"] = "00";
|
||||
compressionMap["1010"] = "11";
|
||||
compressionMap["1011"] = "00";
|
||||
compressionMap["1100"] = "11";
|
||||
compressionMap["1101"] = "10";
|
||||
compressionMap["1110"] = "00";
|
||||
compressionMap["1111"] = "01";
|
||||
Halfblock Feistel::CompressionFunction(const Block& block) {
|
||||
std::stringstream ss;
|
||||
const std::string bits = block.to_string();
|
||||
|
||||
// We have to half the bits!
|
||||
for (std::size_t i = 0; i < BLOCK_SIZE; i += 4) {
|
||||
const std::string sub = bits.substr(i, 4);
|
||||
ss << compressionMap[sub];
|
||||
}
|
||||
std::unordered_map<std::string, std::string> compressionMap;
|
||||
compressionMap["0000"] = "10";
|
||||
compressionMap["0001"] = "01";
|
||||
compressionMap["0010"] = "10";
|
||||
compressionMap["0011"] = "10";
|
||||
compressionMap["0100"] = "11";
|
||||
compressionMap["0101"] = "01";
|
||||
compressionMap["0110"] = "00";
|
||||
compressionMap["0111"] = "11";
|
||||
compressionMap["1000"] = "01";
|
||||
compressionMap["1001"] = "00";
|
||||
compressionMap["1010"] = "11";
|
||||
compressionMap["1011"] = "00";
|
||||
compressionMap["1100"] = "11";
|
||||
compressionMap["1101"] = "10";
|
||||
compressionMap["1110"] = "00";
|
||||
compressionMap["1111"] = "01";
|
||||
|
||||
return Halfblock(ss.str());
|
||||
}
|
||||
// We have to half the bits!
|
||||
for (std::size_t i = 0; i < BLOCK_SIZE; i += 4) {
|
||||
const std::string sub = bits.substr(i, 4);
|
||||
ss << compressionMap[sub];
|
||||
}
|
||||
|
||||
std::string GhettoCipher::Feistel::SBox(const std::string& in) {
|
||||
static std::unordered_map<std::string, std::string> subMap;
|
||||
static bool mapInitialized = false;
|
||||
if (!mapInitialized) {
|
||||
subMap["0000"] = "1100";
|
||||
subMap["0001"] = "1000";
|
||||
subMap["0010"] = "0001";
|
||||
subMap["0011"] = "0111";
|
||||
subMap["0100"] = "1011";
|
||||
subMap["0101"] = "0011";
|
||||
subMap["0110"] = "1101";
|
||||
subMap["0111"] = "1111";
|
||||
subMap["1000"] = "0000";
|
||||
subMap["1001"] = "1010";
|
||||
subMap["1010"] = "0100";
|
||||
subMap["1011"] = "1001";
|
||||
subMap["1100"] = "0010";
|
||||
subMap["1101"] = "1110";
|
||||
subMap["1110"] = "0101";
|
||||
subMap["1111"] = "0110";
|
||||
mapInitialized = true;
|
||||
}
|
||||
return Halfblock(ss.str());
|
||||
}
|
||||
|
||||
return subMap[in];
|
||||
}
|
||||
std::string Feistel::SBox(const std::string& in) {
|
||||
static std::unordered_map<std::string, std::string> subMap;
|
||||
static bool mapInitialized = false;
|
||||
if (!mapInitialized) {
|
||||
subMap["0000"] = "1100";
|
||||
subMap["0001"] = "1000";
|
||||
subMap["0010"] = "0001";
|
||||
subMap["0011"] = "0111";
|
||||
subMap["0100"] = "1011";
|
||||
subMap["0101"] = "0011";
|
||||
subMap["0110"] = "1101";
|
||||
subMap["0111"] = "1111";
|
||||
subMap["1000"] = "0000";
|
||||
subMap["1001"] = "1010";
|
||||
subMap["1010"] = "0100";
|
||||
subMap["1011"] = "1001";
|
||||
subMap["1100"] = "0010";
|
||||
subMap["1101"] = "1110";
|
||||
subMap["1110"] = "0101";
|
||||
subMap["1111"] = "0110";
|
||||
mapInitialized = true;
|
||||
}
|
||||
|
||||
void GhettoCipher::Feistel::GenerateRoundKeys(const Block& seedKey) {
|
||||
// Clear initial key memory
|
||||
ZeroKeyMemory();
|
||||
roundKeys = Keyset();
|
||||
return subMap[in];
|
||||
}
|
||||
|
||||
// Derive the initial two round keys
|
||||
void Feistel::GenerateRoundKeys(const Block& seedKey) {
|
||||
// Clear initial key memory
|
||||
ZeroKeyMemory();
|
||||
roundKeys = Keyset();
|
||||
|
||||
// Compress- substitute, and expand the seed key to form the initial and the second-initial round key
|
||||
// This action is non-linear and irreversible, and thus strenghtens security.
|
||||
Halfblock compressedSeed1 = CompressionFunction(seedKey);
|
||||
Halfblock compressedSeed2 = CompressionFunction(Shiftl(seedKey, 1)); // Shifting one key by 1 will result in a completely different compression
|
||||
// Derive the initial two round keys
|
||||
|
||||
// To add further confusion, let's shift seed1 by 1 aswell (after compression, but before substitution)
|
||||
// but only if the total number of bits set are a multiple of 3
|
||||
// if it is a multiple of 4, we'll shift it by 1 into the opposite direction
|
||||
const std::size_t setBits1 = compressedSeed1.count();
|
||||
// Compress- substitute, and expand the seed key to form the initial and the second-initial round key
|
||||
// This action is non-linear and irreversible, and thus strenghtens security.
|
||||
Halfblock compressedSeed1 = CompressionFunction(seedKey);
|
||||
Halfblock compressedSeed2 = CompressionFunction(Shiftl(seedKey, 1)); // Shifting one key by 1 will result in a completely different compression
|
||||
|
||||
if (setBits1 % 4 == 0) {
|
||||
compressedSeed1 = Shiftr(compressedSeed1, 1);
|
||||
}
|
||||
else if (setBits1 % 3 == 0) {
|
||||
compressedSeed1 = Shiftl(compressedSeed1, 1);
|
||||
}
|
||||
// To add further confusion, let's shift seed1 by 1 aswell (after compression, but before substitution)
|
||||
// but only if the total number of bits set are a multiple of 3
|
||||
// if it is a multiple of 4, we'll shift it by 1 into the opposite direction
|
||||
const std::size_t setBits1 = compressedSeed1.count();
|
||||
|
||||
// Now apply substitution
|
||||
std::stringstream ssKey1;
|
||||
std::stringstream ssKey2;
|
||||
const std::string bitsKey1 = compressedSeed1.to_string();
|
||||
const std::string bitsKey2 = compressedSeed2.to_string();
|
||||
if (setBits1 % 4 == 0) {
|
||||
compressedSeed1 = Shiftr(compressedSeed1, 1);
|
||||
}
|
||||
else if (setBits1 % 3 == 0) {
|
||||
compressedSeed1 = Shiftl(compressedSeed1, 1);
|
||||
}
|
||||
|
||||
for (std::size_t i = 0; i < HALFBLOCK_SIZE; i += 4) {
|
||||
ssKey1 << SBox(bitsKey1.substr(i, 4));
|
||||
ssKey2 << SBox(bitsKey2.substr(i, 4));
|
||||
}
|
||||
// Now apply substitution
|
||||
std::stringstream ssKey1;
|
||||
std::stringstream ssKey2;
|
||||
const std::string bitsKey1 = compressedSeed1.to_string();
|
||||
const std::string bitsKey2 = compressedSeed2.to_string();
|
||||
|
||||
compressedSeed1 = Halfblock(ssKey1.str());
|
||||
compressedSeed2 = Halfblock(ssKey2.str());
|
||||
for (std::size_t i = 0; i < HALFBLOCK_SIZE; i += 4) {
|
||||
ssKey1 << SBox(bitsKey1.substr(i, 4));
|
||||
ssKey2 << SBox(bitsKey2.substr(i, 4));
|
||||
}
|
||||
|
||||
// Now extrapolate them to BLOCK_SIZE (key size) again
|
||||
// Xor with the original seed key to get rid of the repititions caused by the expansion
|
||||
roundKeys[0] = ExpansionFunction(compressedSeed1) ^ seedKey;
|
||||
roundKeys[1] = ExpansionFunction(compressedSeed2) ^ seedKey;
|
||||
compressedSeed1 = Halfblock(ssKey1.str());
|
||||
compressedSeed2 = Halfblock(ssKey2.str());
|
||||
|
||||
// Now derive all other round keys
|
||||
// Now extrapolate them to BLOCK_SIZE (key size) again
|
||||
// Xor with the original seed key to get rid of the repititions caused by the expansion
|
||||
roundKeys[0] = ExpansionFunction(compressedSeed1) ^ seedKey;
|
||||
roundKeys[1] = ExpansionFunction(compressedSeed2) ^ seedKey;
|
||||
|
||||
for (std::size_t i = 2; i < roundKeys.size(); i++) {
|
||||
// Initialize new round key with last round key
|
||||
Block newKey = roundKeys[i - 1];
|
||||
// Now derive all other round keys
|
||||
|
||||
// Shift to left by how many bits are set, modulo 8
|
||||
newKey = Shiftl(newKey, newKey.count() % 8); // This action is irreversible
|
||||
for (std::size_t i = 2; i < roundKeys.size(); i++) {
|
||||
// Initialize new round key with last round key
|
||||
Block newKey = roundKeys[i - 1];
|
||||
|
||||
// Split into two halfblocks,
|
||||
// apply F() to one halfblock with rk[i-2],
|
||||
// xor the other one with it
|
||||
// and put them back together
|
||||
auto halfkeys = FeistelSplit(newKey);
|
||||
Halfblock halfkey1 = F(halfkeys.first, roundKeys[i - 2]);
|
||||
Halfblock halfkey2 = halfkeys.second ^ halfkey1; // I know this is reversible, but it helps to diffuse future round keys.
|
||||
// Shift to left by how many bits are set, modulo 8
|
||||
newKey = Shiftl(newKey, newKey.count() % 8); // This action is irreversible
|
||||
|
||||
roundKeys[i] = FeistelCombine(halfkey1, halfkey2);
|
||||
}
|
||||
// Split into two halfblocks,
|
||||
// apply F() to one halfblock with rk[i-2],
|
||||
// xor the other one with it
|
||||
// and put them back together
|
||||
auto halfkeys = FeistelSplit(newKey);
|
||||
Halfblock halfkey1 = F(halfkeys.first, roundKeys[i - 2]);
|
||||
Halfblock halfkey2 = halfkeys.second ^ halfkey1; // I know this is reversible, but it helps to diffuse future round keys.
|
||||
|
||||
return;
|
||||
}
|
||||
roundKeys[i] = FeistelCombine(halfkey1, halfkey2);
|
||||
}
|
||||
|
||||
// These pragmas only work for MSVC and g++, as far as i know. Beware!!!
|
||||
return;
|
||||
}
|
||||
|
||||
// These pragmas only work for MSVC and g++, as far as i know. Beware!!!
|
||||
#if defined _WIN32 || defined _WIN64
|
||||
#pragma optimize("", off )
|
||||
#elif defined __GNUG__
|
||||
#pragma GCC push_options
|
||||
#pragma GCC optimize ("O0")
|
||||
#endif
|
||||
void GhettoCipher::Feistel::ZeroKeyMemory() {
|
||||
for (Block& key : roundKeys) {
|
||||
key.reset();
|
||||
}
|
||||
void Feistel::ZeroKeyMemory() {
|
||||
for (Block& key : roundKeys) {
|
||||
key.reset();
|
||||
}
|
||||
|
||||
return;
|
||||
}
|
||||
return;
|
||||
}
|
||||
#if defined _WIN32 || defined _WIN64
|
||||
#pragma optimize("", on )
|
||||
#elif defined __GNUG__
|
||||
#pragma GCC pop_options
|
||||
#endif
|
||||
|
||||
}
|
||||
|
||||
|
@ -2,83 +2,87 @@
|
||||
#include "Cipher.h"
|
||||
#include "Util.h"
|
||||
|
||||
std::string GhettoCipher::GhettoCryptWrapper::EncryptString(const std::string& cleartext, const std::string& password) {
|
||||
// Instanciate our cipher and supply a key
|
||||
const Block key = PasswordToKey(password);
|
||||
Cipher cipher(key);
|
||||
|
||||
// Recode the ascii-string to bits
|
||||
const Flexblock cleartext_bits = StringToBits(cleartext);
|
||||
|
||||
// Encrypt our cleartext bits
|
||||
const Flexblock ciphertext_bits = cipher.Encipher(cleartext_bits);
|
||||
|
||||
// Recode the ciphertext bits to a hex-string
|
||||
const std::string ciphertext = BitsToHexstring(ciphertext_bits);
|
||||
|
||||
// Return it
|
||||
return ciphertext;
|
||||
}
|
||||
|
||||
std::string GhettoCipher::GhettoCryptWrapper::DecryptString(const std::string& ciphertext, const std::string& password) {
|
||||
// Instanciate our cipher and supply a key
|
||||
const Block key = PasswordToKey(password);
|
||||
Cipher cipher(key);
|
||||
|
||||
// Recode the hex-string to bits
|
||||
const Flexblock ciphertext_bits = HexstringToBits(ciphertext);
|
||||
|
||||
// Decrypt the ciphertext bits
|
||||
const std::string cleartext_bits = cipher.Decipher(ciphertext_bits);
|
||||
|
||||
// Recode the cleartext bits to an ascii-string
|
||||
const std::string cleartext = BitsToString(cleartext_bits);
|
||||
|
||||
// Return it
|
||||
return cleartext;
|
||||
}
|
||||
|
||||
bool GhettoCipher::GhettoCryptWrapper::EncryptFile(const std::string& filename_in, const std::string& filename_out, const std::string& password, bool printProgressReport) {
|
||||
try {
|
||||
// Read the file to bits
|
||||
const Flexblock cleartext_bits = ReadFileToBits(filename_in);
|
||||
namespace Leonetienne::GCrypt {
|
||||
|
||||
std::string GhettoCryptWrapper::EncryptString(const std::string& cleartext, const std::string& password) {
|
||||
// Instanciate our cipher and supply a key
|
||||
const Block key = PasswordToKey(password);
|
||||
Cipher cipher(key);
|
||||
|
||||
// Recode the ascii-string to bits
|
||||
const Flexblock cleartext_bits = StringToBits(cleartext);
|
||||
|
||||
// Encrypt our cleartext bits
|
||||
const Flexblock ciphertext_bits = cipher.Encipher(cleartext_bits, printProgressReport);
|
||||
const Flexblock ciphertext_bits = cipher.Encipher(cleartext_bits);
|
||||
|
||||
// Write our ciphertext bits to file
|
||||
WriteBitsToFile(filename_out, ciphertext_bits);
|
||||
// Recode the ciphertext bits to a hex-string
|
||||
const std::string ciphertext = BitsToHexstring(ciphertext_bits);
|
||||
|
||||
return true;
|
||||
// Return it
|
||||
return ciphertext;
|
||||
}
|
||||
catch (std::runtime_error&) {
|
||||
return false;
|
||||
}
|
||||
}
|
||||
|
||||
bool GhettoCipher::GhettoCryptWrapper::DecryptFile(const std::string& filename_in, const std::string& filename_out, const std::string& password, bool printProgressReport) {
|
||||
try {
|
||||
// Read the file to bits
|
||||
const Flexblock ciphertext_bits = ReadFileToBits(filename_in);
|
||||
|
||||
std::string GhettoCryptWrapper::DecryptString(const std::string& ciphertext, const std::string& password) {
|
||||
// Instanciate our cipher and supply a key
|
||||
const Block key = PasswordToKey(password);
|
||||
Cipher cipher(key);
|
||||
|
||||
// Recode the hex-string to bits
|
||||
const Flexblock ciphertext_bits = HexstringToBits(ciphertext);
|
||||
|
||||
// Decrypt the ciphertext bits
|
||||
const Flexblock cleartext_bits = cipher.Decipher(ciphertext_bits, printProgressReport);
|
||||
const std::string cleartext_bits = cipher.Decipher(ciphertext_bits);
|
||||
|
||||
// Write our cleartext bits to file
|
||||
WriteBitsToFile(filename_out, cleartext_bits);
|
||||
// Recode the cleartext bits to an ascii-string
|
||||
const std::string cleartext = BitsToString(cleartext_bits);
|
||||
|
||||
return true;
|
||||
// Return it
|
||||
return cleartext;
|
||||
}
|
||||
catch (std::runtime_error&) {
|
||||
return false;
|
||||
|
||||
bool GhettoCryptWrapper::EncryptFile(const std::string& filename_in, const std::string& filename_out, const std::string& password, bool printProgressReport) {
|
||||
try {
|
||||
// Read the file to bits
|
||||
const Flexblock cleartext_bits = ReadFileToBits(filename_in);
|
||||
|
||||
// Instanciate our cipher and supply a key
|
||||
const Block key = PasswordToKey(password);
|
||||
Cipher cipher(key);
|
||||
|
||||
// Encrypt our cleartext bits
|
||||
const Flexblock ciphertext_bits = cipher.Encipher(cleartext_bits, printProgressReport);
|
||||
|
||||
// Write our ciphertext bits to file
|
||||
WriteBitsToFile(filename_out, ciphertext_bits);
|
||||
|
||||
return true;
|
||||
}
|
||||
catch (std::runtime_error&) {
|
||||
return false;
|
||||
}
|
||||
}
|
||||
|
||||
bool GhettoCryptWrapper::DecryptFile(const std::string& filename_in, const std::string& filename_out, const std::string& password, bool printProgressReport) {
|
||||
try {
|
||||
// Read the file to bits
|
||||
const Flexblock ciphertext_bits = ReadFileToBits(filename_in);
|
||||
|
||||
// Instanciate our cipher and supply a key
|
||||
const Block key = PasswordToKey(password);
|
||||
Cipher cipher(key);
|
||||
|
||||
// Decrypt the ciphertext bits
|
||||
const Flexblock cleartext_bits = cipher.Decipher(ciphertext_bits, printProgressReport);
|
||||
|
||||
// Write our cleartext bits to file
|
||||
WriteBitsToFile(filename_out, cleartext_bits);
|
||||
|
||||
return true;
|
||||
}
|
||||
catch (std::runtime_error&) {
|
||||
return false;
|
||||
}
|
||||
}
|
||||
|
||||
}
|
||||
|
||||
|
@ -1,13 +1,17 @@
|
||||
#include "InitializationVector.h"
|
||||
#include "Feistel.h"
|
||||
|
||||
GhettoCipher::InitializationVector::InitializationVector(const Block& seed) {
|
||||
// We'll generate our initialization vector by encrypting our seed with itself as a key
|
||||
// iv = E(M=seed, K=seed)
|
||||
iv = Feistel(seed).Encipher(seed);
|
||||
}
|
||||
|
||||
GhettoCipher::InitializationVector::operator GhettoCipher::Block() const {
|
||||
return iv;
|
||||
namespace Leonetienne::GCrypt {
|
||||
|
||||
InitializationVector::InitializationVector(const Block& seed) {
|
||||
// We'll generate our initialization vector by encrypting our seed with itself as a key
|
||||
// iv = E(M=seed, K=seed)
|
||||
iv = Feistel(seed).Encipher(seed);
|
||||
}
|
||||
|
||||
InitializationVector::operator Block() const {
|
||||
return iv;
|
||||
}
|
||||
|
||||
}
|
||||
|
||||
|
Loading…
x
Reference in New Issue
Block a user