Added comment

This commit is contained in:
Leon Etienne 2022-05-16 00:21:01 +02:00
parent a29e199125
commit 9772c5fcf8

View File

@ -1,276 +1,276 @@
#include <unordered_map> #include <unordered_map>
#include "Feistel.h" #include "Feistel.h"
#include "Util.h" #include "Util.h"
#include "Config.h" #include "Config.h"
GhettoCipher::Feistel::Feistel(const Block& key) GhettoCipher::Feistel::Feistel(const Block& key)
{ {
SetKey(key); SetKey(key);
return; return;
} }
GhettoCipher::Feistel::~Feistel() GhettoCipher::Feistel::~Feistel()
{ {
ZeroKeyMemory(); ZeroKeyMemory();
return; return;
} }
void GhettoCipher::Feistel::SetKey(const Block& key) void GhettoCipher::Feistel::SetKey(const Block& key)
{ {
GenerateRoundKeys(key); GenerateRoundKeys(key);
return; return;
} }
GhettoCipher::Block GhettoCipher::Feistel::Encipher(const Block& data) GhettoCipher::Block GhettoCipher::Feistel::Encipher(const Block& data)
{ {
return Run(data, false); return Run(data, false);
} }
GhettoCipher::Block GhettoCipher::Feistel::Decipher(const Block& data) GhettoCipher::Block GhettoCipher::Feistel::Decipher(const Block& data)
{ {
return Run(data, true); return Run(data, true);
} }
GhettoCipher::Block GhettoCipher::Feistel::Run(const Block& data, bool reverseKeys) GhettoCipher::Block GhettoCipher::Feistel::Run(const Block& data, bool reverseKeys)
{ {
const auto splitData = FeistelSplit(data); const auto splitData = FeistelSplit(data);
GhettoCipher::Halfblock l = splitData.first; GhettoCipher::Halfblock l = splitData.first;
GhettoCipher::Halfblock r = splitData.second; GhettoCipher::Halfblock r = splitData.second;
Halfblock tmp; Halfblock tmp;
for (std::size_t i = 0; i < N_ROUNDS; i++) for (std::size_t i = 0; i < N_ROUNDS; i++)
{ {
// Calculate key index // Calculate key index
std::size_t keyIndex; std::size_t keyIndex;
if (reverseKeys) if (reverseKeys)
keyIndex = N_ROUNDS - i - 1; keyIndex = N_ROUNDS - i - 1;
else else
keyIndex = i; keyIndex = i;
// Do a feistel round // Do a feistel round
tmp = r; tmp = r;
r = l ^ F(r, roundKeys[keyIndex]); r = l ^ F(r, roundKeys[keyIndex]);
l = tmp; l = tmp;
} }
// Block has finished de*ciphering. // Block has finished de*ciphering.
// Let's generate a new set of round keys. // Let's generate a new set of round keys.
GenerateRoundKeys((Block)roundKeys.back()); GenerateRoundKeys((Block)roundKeys.back());
return FeistelCombine(r, l); return FeistelCombine(r, l);
} }
GhettoCipher::Halfblock GhettoCipher::Feistel::F(Halfblock m, const Block& key) GhettoCipher::Halfblock GhettoCipher::Feistel::F(Halfblock m, const Block& key)
{ {
// Made-up F function // Made-up F function
// Expand to full bitwidth // Expand to full bitwidth
Block m_expanded = ExpansionFunction(m); Block m_expanded = ExpansionFunction(m);
// Shift to left by 1 // Shift to left by 1
m_expanded = Shiftl(m_expanded, 1); m_expanded = Shiftl(m_expanded, 1);
// Xor with key // Xor with key
m_expanded ^= key; m_expanded ^= key;
// Non-linearly apply subsitution boxes // Non-linearly apply subsitution boxes
std::stringstream ss; std::stringstream ss;
const std::string m_str = m_expanded.to_string(); const std::string m_str = m_expanded.to_string();
for (std::size_t i = 0; i < BLOCK_SIZE; i += 4) for (std::size_t i = 0; i < BLOCK_SIZE; i += 4)
{ {
ss << SBox(m_str.substr(i, 4)); ss << SBox(m_str.substr(i, 4));
} }
m_expanded = Block(ss.str()); m_expanded = Block(ss.str());
// Return the compressed version // Return the compressed version
return CompressionFunction(m_expanded); return CompressionFunction(m_expanded);
} }
std::pair<GhettoCipher::Halfblock, GhettoCipher::Halfblock> GhettoCipher::Feistel::FeistelSplit(const Block& block) std::pair<GhettoCipher::Halfblock, GhettoCipher::Halfblock> GhettoCipher::Feistel::FeistelSplit(const Block& block)
{ {
const std::string bits = block.to_string(); const std::string bits = block.to_string();
Halfblock l(bits.substr(0, bits.size() / 2)); Halfblock l(bits.substr(0, bits.size() / 2));
Halfblock r(bits.substr(bits.size() / 2)); Halfblock r(bits.substr(bits.size() / 2));
return std::make_pair(l, r); return std::make_pair(l, r);
} }
GhettoCipher::Block GhettoCipher::Feistel::FeistelCombine(const Halfblock& l, const Halfblock& r) GhettoCipher::Block GhettoCipher::Feistel::FeistelCombine(const Halfblock& l, const Halfblock& r)
{ {
return Block(l.to_string() + r.to_string()); return Block(l.to_string() + r.to_string());
} }
GhettoCipher::Block GhettoCipher::Feistel::ExpansionFunction(const Halfblock& block) GhettoCipher::Block GhettoCipher::Feistel::ExpansionFunction(const Halfblock& block)
{ {
std::stringstream ss; std::stringstream ss;
const std::string bits = block.to_string(); const std::string bits = block.to_string();
std::unordered_map<std::string, std::string> expansionMap; std::unordered_map<std::string, std::string> expansionMap;
expansionMap["00"] = "1101"; expansionMap["00"] = "1101";
expansionMap["01"] = "1000"; expansionMap["01"] = "1000";
expansionMap["10"] = "0010"; expansionMap["10"] = "0010";
expansionMap["11"] = "0111"; expansionMap["11"] = "0111";
// We have to double the bits! // We have to double the bits!
for (std::size_t i = 0; i < HALFBLOCK_SIZE; i += 2) for (std::size_t i = 0; i < HALFBLOCK_SIZE; i += 2)
{ {
const std::string sub = bits.substr(i, 2); const std::string sub = bits.substr(i, 2);
ss << expansionMap[sub]; ss << expansionMap[sub];
} }
return Block(ss.str()); return Block(ss.str());
} }
GhettoCipher::Halfblock GhettoCipher::Feistel::CompressionFunction(const Block& block) GhettoCipher::Halfblock GhettoCipher::Feistel::CompressionFunction(const Block& block)
{ {
std::stringstream ss; std::stringstream ss;
const std::string bits = block.to_string(); const std::string bits = block.to_string();
std::unordered_map<std::string, std::string> compressionMap; std::unordered_map<std::string, std::string> compressionMap;
compressionMap["0000"] = "10"; compressionMap["0000"] = "10";
compressionMap["0001"] = "01"; compressionMap["0001"] = "01";
compressionMap["0010"] = "10"; compressionMap["0010"] = "10";
compressionMap["0011"] = "10"; compressionMap["0011"] = "10";
compressionMap["0100"] = "11"; compressionMap["0100"] = "11";
compressionMap["0101"] = "01"; compressionMap["0101"] = "01";
compressionMap["0110"] = "00"; compressionMap["0110"] = "00";
compressionMap["0111"] = "11"; compressionMap["0111"] = "11";
compressionMap["1000"] = "01"; compressionMap["1000"] = "01";
compressionMap["1001"] = "00"; compressionMap["1001"] = "00";
compressionMap["1010"] = "11"; compressionMap["1010"] = "11";
compressionMap["1011"] = "00"; compressionMap["1011"] = "00";
compressionMap["1100"] = "11"; compressionMap["1100"] = "11";
compressionMap["1101"] = "10"; compressionMap["1101"] = "10";
compressionMap["1110"] = "00"; compressionMap["1110"] = "00";
compressionMap["1111"] = "01"; compressionMap["1111"] = "01";
// We have to half the bits! // We have to half the bits!
for (std::size_t i = 0; i < BLOCK_SIZE; i += 4) for (std::size_t i = 0; i < BLOCK_SIZE; i += 4)
{ {
const std::string sub = bits.substr(i, 4); const std::string sub = bits.substr(i, 4);
ss << compressionMap[sub]; ss << compressionMap[sub];
} }
return Halfblock(ss.str()); return Halfblock(ss.str());
} }
std::string GhettoCipher::Feistel::SBox(const std::string& in) std::string GhettoCipher::Feistel::SBox(const std::string& in)
{ {
static std::unordered_map<std::string, std::string> subMap; static std::unordered_map<std::string, std::string> subMap;
static bool mapInitialized = false; static bool mapInitialized = false;
if (!mapInitialized) if (!mapInitialized)
{ {
subMap["0000"] = "1100"; subMap["0000"] = "1100";
subMap["0001"] = "1000"; subMap["0001"] = "1000";
subMap["0010"] = "0001"; subMap["0010"] = "0001";
subMap["0011"] = "0111"; subMap["0011"] = "0111";
subMap["0100"] = "1011"; subMap["0100"] = "1011";
subMap["0101"] = "0011"; subMap["0101"] = "0011";
subMap["0110"] = "1101"; subMap["0110"] = "1101";
subMap["0111"] = "1111"; subMap["0111"] = "1111";
subMap["1000"] = "0000"; subMap["1000"] = "0000";
subMap["1001"] = "1010"; subMap["1001"] = "1010";
subMap["1010"] = "0100"; subMap["1010"] = "0100";
subMap["1011"] = "1001"; subMap["1011"] = "1001";
subMap["1100"] = "0010"; subMap["1100"] = "0010";
subMap["1101"] = "1110"; subMap["1101"] = "1110";
subMap["1110"] = "0101"; subMap["1110"] = "0101";
subMap["1111"] = "0110"; subMap["1111"] = "0110";
mapInitialized = true; mapInitialized = true;
} }
return subMap[in]; return subMap[in];
} }
void GhettoCipher::Feistel::GenerateRoundKeys(const Block& seedKey) void GhettoCipher::Feistel::GenerateRoundKeys(const Block& seedKey)
{ {
// Clear initial key memory // Clear initial key memory
ZeroKeyMemory(); ZeroKeyMemory();
roundKeys = Keyset(); roundKeys = Keyset();
// Derive the initial two round keys // Derive the initial two round keys
// Compress- substitute, and expand the seed key to form the initial and the second-initial round key // Compress- substitute, and expand the seed key to form the initial and the second-initial round key
// This action is non-linear and irreversible, and thus strenghtens security. // This action is non-linear and irreversible, and thus strenghtens security.
Halfblock compressedSeed1 = CompressionFunction(seedKey); Halfblock compressedSeed1 = CompressionFunction(seedKey);
Halfblock compressedSeed2 = CompressionFunction(Shiftl(seedKey, 1)); // Shifting one key by 1 will result in a completely different compression Halfblock compressedSeed2 = CompressionFunction(Shiftl(seedKey, 1)); // Shifting one key by 1 will result in a completely different compression
// To add further confusion, let's shift seed1 by 1 aswell (after compression, but before substitution) // To add further confusion, let's shift seed1 by 1 aswell (after compression, but before substitution)
// but only if the total number of bits set are a multiple of 3 // but only if the total number of bits set are a multiple of 3
// if it is a multiple of 4, we'll shift it by 1 into the opposite direction // if it is a multiple of 4, we'll shift it by 1 into the opposite direction
const std::size_t setBits1 = compressedSeed1.count(); const std::size_t setBits1 = compressedSeed1.count();
if (setBits1 % 4 == 0) if (setBits1 % 4 == 0)
compressedSeed1 = Shiftr(compressedSeed1, 1); compressedSeed1 = Shiftr(compressedSeed1, 1);
else if (setBits1 % 3 == 0) else if (setBits1 % 3 == 0)
compressedSeed1 = Shiftl(compressedSeed1, 1); compressedSeed1 = Shiftl(compressedSeed1, 1);
// Now apply substitution // Now apply substitution
std::stringstream ssKey1; std::stringstream ssKey1;
std::stringstream ssKey2; std::stringstream ssKey2;
const std::string bitsKey1 = compressedSeed1.to_string(); const std::string bitsKey1 = compressedSeed1.to_string();
const std::string bitsKey2 = compressedSeed2.to_string(); const std::string bitsKey2 = compressedSeed2.to_string();
for (std::size_t i = 0; i < HALFBLOCK_SIZE; i += 4) for (std::size_t i = 0; i < HALFBLOCK_SIZE; i += 4)
{ {
ssKey1 << SBox(bitsKey1.substr(i, 4)); ssKey1 << SBox(bitsKey1.substr(i, 4));
ssKey2 << SBox(bitsKey2.substr(i, 4)); ssKey2 << SBox(bitsKey2.substr(i, 4));
} }
compressedSeed1 = Halfblock(ssKey1.str()); compressedSeed1 = Halfblock(ssKey1.str());
compressedSeed2 = Halfblock(ssKey2.str()); compressedSeed2 = Halfblock(ssKey2.str());
// Now extrapolate them to BLOCK_SIZE (key size) again // Now extrapolate them to BLOCK_SIZE (key size) again
// Xor with the original seed key to get rid of the repititions caused by the expansion // Xor with the original seed key to get rid of the repititions caused by the expansion
roundKeys[0] = ExpansionFunction(compressedSeed1) ^ seedKey; roundKeys[0] = ExpansionFunction(compressedSeed1) ^ seedKey;
roundKeys[1] = ExpansionFunction(compressedSeed2) ^ seedKey; roundKeys[1] = ExpansionFunction(compressedSeed2) ^ seedKey;
// Now derive all other round keys // Now derive all other round keys
for (std::size_t i = 2; i < roundKeys.size(); i++) for (std::size_t i = 2; i < roundKeys.size(); i++)
{ {
// Initialize new round key with last round key // Initialize new round key with last round key
Block newKey = roundKeys[i - 1]; Block newKey = roundKeys[i - 1];
// Shift to left by how many bits are set, modulo 8 // Shift to left by how many bits are set, modulo 8
newKey = Shiftl(newKey, newKey.count() % 8); // This action is irreversible newKey = Shiftl(newKey, newKey.count() % 8); // This action is irreversible
// Split into two halfblocks, // Split into two halfblocks,
// apply F() to one halfblock with rk[i-2], // apply F() to one halfblock with rk[i-2],
// xor the other one with it // xor the other one with it
// and put them back together // and put them back together
auto halfkeys = FeistelSplit(newKey); auto halfkeys = FeistelSplit(newKey);
Halfblock halfkey1 = F(halfkeys.first, roundKeys[i - 2]); Halfblock halfkey1 = F(halfkeys.first, roundKeys[i - 2]);
Halfblock halfkey2 = halfkeys.second ^ halfkey1; Halfblock halfkey2 = halfkeys.second ^ halfkey1; // I know this is reversible, but it helps to diffuse future round keys.
roundKeys[i] = FeistelCombine(halfkey1, halfkey2); roundKeys[i] = FeistelCombine(halfkey1, halfkey2);
} }
return; return;
} }
// These pragmas only work for MSVC and g++, as far as i know. Beware!!! // These pragmas only work for MSVC and g++, as far as i know. Beware!!!
#if defined _WIN32 || defined _WIN64 #if defined _WIN32 || defined _WIN64
#pragma optimize("", off ) #pragma optimize("", off )
#elif defined __GNUG__ #elif defined __GNUG__
#pragma GCC push_options #pragma GCC push_options
#pragma GCC optimize ("O0") #pragma GCC optimize ("O0")
#endif #endif
void GhettoCipher::Feistel::ZeroKeyMemory() void GhettoCipher::Feistel::ZeroKeyMemory()
{ {
for (Block& key : roundKeys) for (Block& key : roundKeys)
key.reset(); key.reset();
return; return;
} }
#if defined _WIN32 || defined _WIN64 #if defined _WIN32 || defined _WIN64
#pragma optimize("", on ) #pragma optimize("", on )
#elif defined __GNUG__ #elif defined __GNUG__
#pragma GCC pop_options #pragma GCC pop_options
#endif #endif