GCryptLib: Fix include paths

This commit is contained in:
Leonetienne 2022-05-16 22:35:28 +02:00
parent 9432325b4a
commit 7fe9dcc6dc
No known key found for this signature in database
GPG Key ID: C33879CD92E9708C
16 changed files with 483 additions and 455 deletions

View File

@ -1,8 +1,8 @@
#include <iostream>
#include <GhettoCryptWrapper.h>
#include <SecureBitset.h>
#include <Util.h>
#include <InitializationVector.h>
#include <GCrypt/GhettoCryptWrapper.h>
#include <GCrypt/SecureBitset.h>
#include <GCrypt/Util.h>
#include <GCrypt/InitializationVector.h>
using namespace Leonetienne::GCrypt;

View File

@ -1,6 +1,6 @@
#pragma once
#include "SecureBitset.h"
#include "Config.h"
#include "GCrypt/SecureBitset.h"
#include "GCrypt/Config.h"
namespace Leonetienne::GCrypt {
typedef SecureBitset<BLOCK_SIZE> Block;

View File

@ -1,6 +1,6 @@
#pragma once
#include "Feistel.h"
#include "Flexblock.h"
#include "GCrypt/Feistel.h"
#include "GCrypt/Flexblock.h"
namespace Leonetienne::GCrypt {
/** Class to apply a block cipher to messages of arbitrary length in a distributed manner

View File

@ -1,7 +1,7 @@
#pragma once
#include "Keyset.h"
#include "Block.h"
#include "Halfblock.h"
#include "GCrypt/Keyset.h"
#include "GCrypt/Block.h"
#include "GCrypt/Halfblock.h"
namespace Leonetienne::GCrypt {
/** Class to perform a feistel block chipher

View File

@ -1,7 +1,7 @@
#pragma once
#include "SecureBitset.h"
#include <cstdint>
#include "Config.h"
#include "GCrypt/SecureBitset.h"
#include "GCrypt/Config.h"
namespace Leonetienne::GCrypt {
constexpr std::size_t HALFBLOCK_SIZE = (BLOCK_SIZE / 2);

View File

@ -1,6 +1,6 @@
#pragma once
#include "Config.h"
#include "Block.h"
#include "GCrypt/Config.h"
#include "GCrypt/Block.h"
namespace Leonetienne::GCrypt {
/** Will create a sudo-random Block based on a seed

View File

@ -1,7 +1,7 @@
#pragma once
#include <array>
#include "Block.h"
#include "Config.h"
#include "GCrypt/Block.h"
#include "GCrypt/Config.h"
namespace Leonetienne::GCrypt {
typedef std::array<Block, N_ROUNDS> Keyset;

View File

@ -3,12 +3,12 @@
#include <sstream>
#include <fstream>
#include <cstring>
#include "SecureBitset.h"
#include "Block.h"
#include "Flexblock.h"
#include "Config.h"
#include "Cipher.h"
#include "InitializationVector.h"
#include "GCrypt/SecureBitset.h"
#include "GCrypt/Block.h"
#include "GCrypt/Flexblock.h"
#include "GCrypt/Config.h"
#include "GCrypt/Cipher.h"
#include "GCrypt/InitializationVector.h"
namespace Leonetienne::GCrypt {
//! Mod-operator that works with negative values

View File

@ -1,8 +1,8 @@
#include <iostream>
#include <vector>
#include "Cipher.h"
#include "Util.h"
#include "InitializationVector.h"
#include "GCrypt/Cipher.h"
#include "GCrypt/Util.h"
#include "GCrypt/InitializationVector.h"
namespace Leonetienne::GCrypt {

View File

@ -1,7 +1,7 @@
#include <unordered_map>
#include "Feistel.h"
#include "Util.h"
#include "Config.h"
#include "GCrypt/Feistel.h"
#include "GCrypt/Util.h"
#include "GCrypt/Config.h"
namespace Leonetienne::GCrypt {

View File

@ -1,6 +1,6 @@
#include "GhettoCryptWrapper.h"
#include "Cipher.h"
#include "Util.h"
#include "GCrypt/GhettoCryptWrapper.h"
#include "GCrypt/Cipher.h"
#include "GCrypt/Util.h"
namespace Leonetienne::GCrypt {

View File

@ -1,5 +1,5 @@
#include "InitializationVector.h"
#include "Feistel.h"
#include "GCrypt/InitializationVector.h"
#include "GCrypt/Feistel.h"
namespace Leonetienne::GCrypt {

View File

@ -1,230 +1,232 @@
#include "CppUnitTest.h"
#include "../GhettoCrypt/Cipher.h"
#include "../GhettoCrypt/Util.h"
using namespace Microsoft::VisualStudio::CppUnitTestFramework;
using namespace GhettoCipher;
// THESE TESTS ASSUME BLOCK_SIZE == 512
namespace SimpleTests
{
TEST_CLASS(EncryptEqualsDecrypt)
{
public:
// Tests that encrypting a message of exactly BLOCK_SIZE yields the exact message back
TEST_METHOD(SingleBlock_NoPadding)
{
// Instanciate our cipher and supply a key
const Block key = PasswordToKey("1234");
const Cipher cipher(key);
// Recode the ascii-string to bits
const Flexblock cleartext_bits =
"1011110011010110000010110001111000111010111101001010100100011101"
"0101110101010010100000110100001000011000111010001001110101111111"
"1110110101100101110001010101011110001010000010111110011011010111"
"1100110100111000000011100101010100110010001110010011000010111001"
"0000010000010000011001111010011110111001000000000110101000110001"
"0110111110110110100000010100000011010001000011100100111001001011"
"1101100100000100010000001011100010010001101111100100101100010001"
"0000011110010110111010110110111110011110011010001100100111110101";
// Encrypt our cleartext bits
const Flexblock ciphertext_bits = cipher.Encipher(cleartext_bits);
// Decipher it again
const Flexblock decryptedBits = cipher.Decipher(ciphertext_bits);
// Assert that the decrypted text equals the plaintext
Assert::AreEqual(
cleartext_bits,
decryptedBits
);
}
// Tests that encrypting a message of less than BLOCK_SIZE yields the exact message plus zero-padding back
TEST_METHOD(SingleBlock_Padding)
{
// Instanciate our cipher and supply a key
const Block key = PasswordToKey("1234");
const Cipher cipher(key);
// Recode the ascii-string to bits
const Flexblock cleartext_bits =
"1011110011010110000010110001111000111010111101001010100100011101"
"0101110101010010100000110100001000011000111010001001110101111111"
"1110110101100101110001010101011110001010000010111110011011010111"
"1100110100111000000011100101010100110010001110010011000010111001"
"0000010000010000011001111010011110111001000000000110101000110001"
"0110111110110110100000010100000011010001000011100100111001001011"
"1101100100000100";
const Flexblock cleartext_bits_EXPECTED_RESULT =
"1011110011010110000010110001111000111010111101001010100100011101"
"0101110101010010100000110100001000011000111010001001110101111111"
"1110110101100101110001010101011110001010000010111110011011010111"
"1100110100111000000011100101010100110010001110010011000010111001"
"0000010000010000011001111010011110111001000000000110101000110001"
"0110111110110110100000010100000011010001000011100100111001001011"
"1101100100000100000000000000000000000000000000000000000000000000"
"0000000000000000000000000000000000000000000000000000000000000000";
// Encrypt our cleartext bits
const Flexblock ciphertext_bits = cipher.Encipher(cleartext_bits);
// Decipher it again
const Flexblock decryptedBits = cipher.Decipher(ciphertext_bits);
// Assert that the decrypted text equals the plaintext
Assert::AreEqual(
cleartext_bits_EXPECTED_RESULT,
decryptedBits
);
}
// Tests that a decrypted ciphertext equals its plaintrext version, using a cleartext that requires A LOT of blocks
TEST_METHOD(MultiBlock_NoPadding)
{
// Instanciate our cipher and supply a key
const Block key = PasswordToKey("1234");
const Cipher cipher(key);
// Recode the ascii-string to bits
const Flexblock cleartext_bits =
"1011110011010110000010110001111000111010111101001010100100011101"
"0101110101010010100000110100001000011000111010001001110101111111"
"1110110101100101110001010101011110001010000010111110011011010111"
"1100110100111000000011100101010100110010001110010011000010111001"
"0000010000010000011001111010011110111001000000000110101000110001"
"0110111110110110100000010100000011010001000011100100111001001011"
"1101100100000100010000001011100010010001101111100100101100010001"
"0000011110010110111010110110111110011110011010001100100111110101"
"1000010010000000000100101011110001000101101101100000010011111011"
"1011111010110100100111100111110011100001111101111110000110001100"
"0001000111000111101110000111011011101010100010100101100111010100"
"0101111110110010110000111111011001101110101101100100100011000100"
"1000110010101001000100001001101000011111101011111100100000100101"
"1100001100111001011111001101000111011101011101000110010110110110"
"0111001010011010010000010110000110010101101100101110111100100011"
"0010111110011100010100000101100101110101101011110100100000110110"
"1001101110101001001111111000010100011100100000101000111101101111"
"0101111011110001101010111010001000111010101111001101100100100100"
"1110110111001100011010110000101000011001011100101100111101110000"
"1010101111011110000111011011011110000111010110110111111010101010"
"0111100101111001010111101000001010100000111010111100111011111001"
"0110111000000110100011011100101101010101101000010010011111100100"
"0010111000001011101110000110010011101001111010100111110111110101"
"1110111000000000101011000100101010000110110111101010011001111010"
"1101011110001110000011010111001100001100101000000101000101000010"
"0101000011011111010010110010000010101100001110011000110111110111"
"1110010101011110111001100010110101101011100111100011101010001011"
"0101110010100110101100111100010000111101111100000111000110110110"
"1001100111000000011010100000011101011000010010011010001011110000"
"1100100111111001001000011100110000011110001100000000010000001001"
"1110000000110010000010011010100011011011000000000111110000110111"
"0101110011001101010110010100011001110110000110010001100110011111";
// Encrypt our cleartext bits
const Flexblock ciphertext_bits = cipher.Encipher(cleartext_bits);
// Decipher it again
const Flexblock decryptedBits = cipher.Decipher(ciphertext_bits);
// Assert that the decrypted text equals the plaintext
Assert::AreEqual(
cleartext_bits,
decryptedBits
);
}
// Tests that a decrypted ciphertext equals its plaintrext version, using a cleartext that requires A LOT of blocks
TEST_METHOD(MultiBlock_Padding)
{
// Instanciate our cipher and supply a key
const Block key = PasswordToKey("1234");
const Cipher cipher(key);
// Recode the ascii-string to bits
const Flexblock cleartext_bits =
"1011110011010110000010110001111000111010111101001010100100011101"
"0101110101010010100000110100001000011000111010001001110101111111"
"1110110101100101110001010101011110001010000010111110011011010111"
"1100110100111000000011100101010100110010001110010011000010111001"
"0000010000010000011001111010011110111001000000000110101000110001"
"0110111110110110100000010100000011010001000011100100111001001011"
"1101100100000100010000001011100010010001101111100100101100010001"
"0000011110010110111010110110111110011110011010001100100111110101"
"1000010010000000000100101011110001000101101101100000010011111011"
"1011111010110100100111100111110011100001111101111110000110001100"
"0001000111000111101110000111011011101010100010100101100111010100"
"0101111110110010110000111111011001101110101101100100100011000100"
"1000110010101001000100001001101000011111101011111100100000100101"
"1100001100111001011111001101000111011101011101000110010110110110"
"0111001010011010010000010110000110010101101100101110111100100011"
"0010111110011100010100000101100101110101101011110100100000110110"
"1001101110101001001111111000010100011100100000101000111101101111"
"0101111011110001101010111010001000111010101111001101100100100100"
"1110110111001100011010110000101000011001011100101100111101110000"
"1010101111011110000111011011011110000111010110110111111010101010"
"0111100101111001010111101000001010100000111010111100111011111001"
"0110111000000110100011011100101101010101101000010010011111100100"
"0010111000001011101110000110010011101001111010100111110111110101"
"1110111000000000101011000100101010000110110111101010011001111010"
"1101011110001110000011010111001100001100101000000101000101000010"
"0101000011011111010010110010000010101100001110011000110111110111"
"1110010101011110111001100010110101101011100111100011101010001011"
"0101110010100110101100111100010000111101111100000111000110110110"
"1001100111000000011010100000011101011000010010011010001011110000"
"1100100111111001001000011100110000011110001100000000010000001001"
"11100000001100100000100110101000110110110000000001111100001";
const Flexblock cleartext_bits_EXPECTED_RESULT =
"1011110011010110000010110001111000111010111101001010100100011101"
"0101110101010010100000110100001000011000111010001001110101111111"
"1110110101100101110001010101011110001010000010111110011011010111"
"1100110100111000000011100101010100110010001110010011000010111001"
"0000010000010000011001111010011110111001000000000110101000110001"
"0110111110110110100000010100000011010001000011100100111001001011"
"1101100100000100010000001011100010010001101111100100101100010001"
"0000011110010110111010110110111110011110011010001100100111110101"
"1000010010000000000100101011110001000101101101100000010011111011"
"1011111010110100100111100111110011100001111101111110000110001100"
"0001000111000111101110000111011011101010100010100101100111010100"
"0101111110110010110000111111011001101110101101100100100011000100"
"1000110010101001000100001001101000011111101011111100100000100101"
"1100001100111001011111001101000111011101011101000110010110110110"
"0111001010011010010000010110000110010101101100101110111100100011"
"0010111110011100010100000101100101110101101011110100100000110110"
"1001101110101001001111111000010100011100100000101000111101101111"
"0101111011110001101010111010001000111010101111001101100100100100"
"1110110111001100011010110000101000011001011100101100111101110000"
"1010101111011110000111011011011110000111010110110111111010101010"
"0111100101111001010111101000001010100000111010111100111011111001"
"0110111000000110100011011100101101010101101000010010011111100100"
"0010111000001011101110000110010011101001111010100111110111110101"
"1110111000000000101011000100101010000110110111101010011001111010"
"1101011110001110000011010111001100001100101000000101000101000010"
"0101000011011111010010110010000010101100001110011000110111110111"
"1110010101011110111001100010110101101011100111100011101010001011"
"0101110010100110101100111100010000111101111100000111000110110110"
"1001100111000000011010100000011101011000010010011010001011110000"
"1100100111111001001000011100110000011110001100000000010000001001"
"1110000000110010000010011010100011011011000000000111110000100000"
"0000000000000000000000000000000000000000000000000000000000000000";
// Encrypt our cleartext bits
const Flexblock ciphertext_bits = cipher.Encipher(cleartext_bits);
// Decipher it again
const Flexblock decryptedBits = cipher.Decipher(ciphertext_bits);
// Assert that the decrypted text equals the plaintext
Assert::AreEqual(
cleartext_bits_EXPECTED_RESULT,
decryptedBits
);
}
};
}
/*
#include "CppUnitTest.h"
#include "../GhettoCrypt/Cipher.h"
#include "../GhettoCrypt/Util.h"
using namespace Microsoft::VisualStudio::CppUnitTestFramework;
using namespace GhettoCipher;
// THESE TESTS ASSUME BLOCK_SIZE == 512
namespace SimpleTests
{
TEST_CLASS(EncryptEqualsDecrypt)
{
public:
// Tests that encrypting a message of exactly BLOCK_SIZE yields the exact message back
TEST_METHOD(SingleBlock_NoPadding)
{
// Instanciate our cipher and supply a key
const Block key = PasswordToKey("1234");
const Cipher cipher(key);
// Recode the ascii-string to bits
const Flexblock cleartext_bits =
"1011110011010110000010110001111000111010111101001010100100011101"
"0101110101010010100000110100001000011000111010001001110101111111"
"1110110101100101110001010101011110001010000010111110011011010111"
"1100110100111000000011100101010100110010001110010011000010111001"
"0000010000010000011001111010011110111001000000000110101000110001"
"0110111110110110100000010100000011010001000011100100111001001011"
"1101100100000100010000001011100010010001101111100100101100010001"
"0000011110010110111010110110111110011110011010001100100111110101";
// Encrypt our cleartext bits
const Flexblock ciphertext_bits = cipher.Encipher(cleartext_bits);
// Decipher it again
const Flexblock decryptedBits = cipher.Decipher(ciphertext_bits);
// Assert that the decrypted text equals the plaintext
Assert::AreEqual(
cleartext_bits,
decryptedBits
);
}
// Tests that encrypting a message of less than BLOCK_SIZE yields the exact message plus zero-padding back
TEST_METHOD(SingleBlock_Padding)
{
// Instanciate our cipher and supply a key
const Block key = PasswordToKey("1234");
const Cipher cipher(key);
// Recode the ascii-string to bits
const Flexblock cleartext_bits =
"1011110011010110000010110001111000111010111101001010100100011101"
"0101110101010010100000110100001000011000111010001001110101111111"
"1110110101100101110001010101011110001010000010111110011011010111"
"1100110100111000000011100101010100110010001110010011000010111001"
"0000010000010000011001111010011110111001000000000110101000110001"
"0110111110110110100000010100000011010001000011100100111001001011"
"1101100100000100";
const Flexblock cleartext_bits_EXPECTED_RESULT =
"1011110011010110000010110001111000111010111101001010100100011101"
"0101110101010010100000110100001000011000111010001001110101111111"
"1110110101100101110001010101011110001010000010111110011011010111"
"1100110100111000000011100101010100110010001110010011000010111001"
"0000010000010000011001111010011110111001000000000110101000110001"
"0110111110110110100000010100000011010001000011100100111001001011"
"1101100100000100000000000000000000000000000000000000000000000000"
"0000000000000000000000000000000000000000000000000000000000000000";
// Encrypt our cleartext bits
const Flexblock ciphertext_bits = cipher.Encipher(cleartext_bits);
// Decipher it again
const Flexblock decryptedBits = cipher.Decipher(ciphertext_bits);
// Assert that the decrypted text equals the plaintext
Assert::AreEqual(
cleartext_bits_EXPECTED_RESULT,
decryptedBits
);
}
// Tests that a decrypted ciphertext equals its plaintrext version, using a cleartext that requires A LOT of blocks
TEST_METHOD(MultiBlock_NoPadding)
{
// Instanciate our cipher and supply a key
const Block key = PasswordToKey("1234");
const Cipher cipher(key);
// Recode the ascii-string to bits
const Flexblock cleartext_bits =
"1011110011010110000010110001111000111010111101001010100100011101"
"0101110101010010100000110100001000011000111010001001110101111111"
"1110110101100101110001010101011110001010000010111110011011010111"
"1100110100111000000011100101010100110010001110010011000010111001"
"0000010000010000011001111010011110111001000000000110101000110001"
"0110111110110110100000010100000011010001000011100100111001001011"
"1101100100000100010000001011100010010001101111100100101100010001"
"0000011110010110111010110110111110011110011010001100100111110101"
"1000010010000000000100101011110001000101101101100000010011111011"
"1011111010110100100111100111110011100001111101111110000110001100"
"0001000111000111101110000111011011101010100010100101100111010100"
"0101111110110010110000111111011001101110101101100100100011000100"
"1000110010101001000100001001101000011111101011111100100000100101"
"1100001100111001011111001101000111011101011101000110010110110110"
"0111001010011010010000010110000110010101101100101110111100100011"
"0010111110011100010100000101100101110101101011110100100000110110"
"1001101110101001001111111000010100011100100000101000111101101111"
"0101111011110001101010111010001000111010101111001101100100100100"
"1110110111001100011010110000101000011001011100101100111101110000"
"1010101111011110000111011011011110000111010110110111111010101010"
"0111100101111001010111101000001010100000111010111100111011111001"
"0110111000000110100011011100101101010101101000010010011111100100"
"0010111000001011101110000110010011101001111010100111110111110101"
"1110111000000000101011000100101010000110110111101010011001111010"
"1101011110001110000011010111001100001100101000000101000101000010"
"0101000011011111010010110010000010101100001110011000110111110111"
"1110010101011110111001100010110101101011100111100011101010001011"
"0101110010100110101100111100010000111101111100000111000110110110"
"1001100111000000011010100000011101011000010010011010001011110000"
"1100100111111001001000011100110000011110001100000000010000001001"
"1110000000110010000010011010100011011011000000000111110000110111"
"0101110011001101010110010100011001110110000110010001100110011111";
// Encrypt our cleartext bits
const Flexblock ciphertext_bits = cipher.Encipher(cleartext_bits);
// Decipher it again
const Flexblock decryptedBits = cipher.Decipher(ciphertext_bits);
// Assert that the decrypted text equals the plaintext
Assert::AreEqual(
cleartext_bits,
decryptedBits
);
}
// Tests that a decrypted ciphertext equals its plaintrext version, using a cleartext that requires A LOT of blocks
TEST_METHOD(MultiBlock_Padding)
{
// Instanciate our cipher and supply a key
const Block key = PasswordToKey("1234");
const Cipher cipher(key);
// Recode the ascii-string to bits
const Flexblock cleartext_bits =
"1011110011010110000010110001111000111010111101001010100100011101"
"0101110101010010100000110100001000011000111010001001110101111111"
"1110110101100101110001010101011110001010000010111110011011010111"
"1100110100111000000011100101010100110010001110010011000010111001"
"0000010000010000011001111010011110111001000000000110101000110001"
"0110111110110110100000010100000011010001000011100100111001001011"
"1101100100000100010000001011100010010001101111100100101100010001"
"0000011110010110111010110110111110011110011010001100100111110101"
"1000010010000000000100101011110001000101101101100000010011111011"
"1011111010110100100111100111110011100001111101111110000110001100"
"0001000111000111101110000111011011101010100010100101100111010100"
"0101111110110010110000111111011001101110101101100100100011000100"
"1000110010101001000100001001101000011111101011111100100000100101"
"1100001100111001011111001101000111011101011101000110010110110110"
"0111001010011010010000010110000110010101101100101110111100100011"
"0010111110011100010100000101100101110101101011110100100000110110"
"1001101110101001001111111000010100011100100000101000111101101111"
"0101111011110001101010111010001000111010101111001101100100100100"
"1110110111001100011010110000101000011001011100101100111101110000"
"1010101111011110000111011011011110000111010110110111111010101010"
"0111100101111001010111101000001010100000111010111100111011111001"
"0110111000000110100011011100101101010101101000010010011111100100"
"0010111000001011101110000110010011101001111010100111110111110101"
"1110111000000000101011000100101010000110110111101010011001111010"
"1101011110001110000011010111001100001100101000000101000101000010"
"0101000011011111010010110010000010101100001110011000110111110111"
"1110010101011110111001100010110101101011100111100011101010001011"
"0101110010100110101100111100010000111101111100000111000110110110"
"1001100111000000011010100000011101011000010010011010001011110000"
"1100100111111001001000011100110000011110001100000000010000001001"
"11100000001100100000100110101000110110110000000001111100001";
const Flexblock cleartext_bits_EXPECTED_RESULT =
"1011110011010110000010110001111000111010111101001010100100011101"
"0101110101010010100000110100001000011000111010001001110101111111"
"1110110101100101110001010101011110001010000010111110011011010111"
"1100110100111000000011100101010100110010001110010011000010111001"
"0000010000010000011001111010011110111001000000000110101000110001"
"0110111110110110100000010100000011010001000011100100111001001011"
"1101100100000100010000001011100010010001101111100100101100010001"
"0000011110010110111010110110111110011110011010001100100111110101"
"1000010010000000000100101011110001000101101101100000010011111011"
"1011111010110100100111100111110011100001111101111110000110001100"
"0001000111000111101110000111011011101010100010100101100111010100"
"0101111110110010110000111111011001101110101101100100100011000100"
"1000110010101001000100001001101000011111101011111100100000100101"
"1100001100111001011111001101000111011101011101000110010110110110"
"0111001010011010010000010110000110010101101100101110111100100011"
"0010111110011100010100000101100101110101101011110100100000110110"
"1001101110101001001111111000010100011100100000101000111101101111"
"0101111011110001101010111010001000111010101111001101100100100100"
"1110110111001100011010110000101000011001011100101100111101110000"
"1010101111011110000111011011011110000111010110110111111010101010"
"0111100101111001010111101000001010100000111010111100111011111001"
"0110111000000110100011011100101101010101101000010010011111100100"
"0010111000001011101110000110010011101001111010100111110111110101"
"1110111000000000101011000100101010000110110111101010011001111010"
"1101011110001110000011010111001100001100101000000101000101000010"
"0101000011011111010010110010000010101100001110011000110111110111"
"1110010101011110111001100010110101101011100111100011101010001011"
"0101110010100110101100111100010000111101111100000111000110110110"
"1001100111000000011010100000011101011000010010011010001011110000"
"1100100111111001001000011100110000011110001100000000010000001001"
"1110000000110010000010011010100011011011000000000111110000100000"
"0000000000000000000000000000000000000000000000000000000000000000";
// Encrypt our cleartext bits
const Flexblock ciphertext_bits = cipher.Encipher(cleartext_bits);
// Decipher it again
const Flexblock decryptedBits = cipher.Decipher(ciphertext_bits);
// Assert that the decrypted text equals the plaintext
Assert::AreEqual(
cleartext_bits_EXPECTED_RESULT,
decryptedBits
);
}
};
}
*/

View File

@ -1,81 +1,103 @@
#include "CppUnitTest.h"
#include "../GhettoCrypt/GhettoCryptWrapper.h"
#include "../GhettoCrypt/Flexblock.h"
#include "../GhettoCrypt/Util.h"
using namespace Microsoft::VisualStudio::CppUnitTestFramework;
using namespace GhettoCipher;
namespace SimpleTests
{
TEST_CLASS(GCWrapper)
{
public:
// Tests that encrypting and decrypting strings using the wrapper works.
// This test will start from scratch after encryption, to ensure EVERYTHING has to be re-calculated.
TEST_METHOD(String)
{
// Setup
const std::string plaintext = "Hello, World!";
const std::string password = "Der Affe will Zucker";
std::string ciphertext;
std::string decrypted;
// Encryption
{
ciphertext = GhettoCryptWrapper::EncryptString(plaintext, password);
}
// Decryption
{
decrypted = GhettoCryptWrapper::DecryptString(ciphertext, password);
}
// Assertion
Assert::AreEqual(
plaintext,
decrypted
);
}
// Tests that encrypting and decrypting files using the wrapper works.
// This test will start from scratch after encryption, to ensure EVERYTHING has to be re-calculated.
TEST_METHOD(File)
{
// Setup
#if defined _WIN64
const std::string testfile_dir = "../../SimpleTests/";
#elif defined _WIN32
const std::string testfile_dir = "../SimpleTests/";
#endif
const std::string filename_plain = testfile_dir + "testfile.png";
const std::string filename_encrypted = testfile_dir + "testfile.png.crypt";
const std::string filename_decrypted = testfile_dir + "testfile.png.clear.png";
const std::string password = "Der Affe will Zucker";
// Encryption
{
GhettoCryptWrapper::EncryptFile(filename_plain, filename_encrypted, password);
}
// Decryption
{
GhettoCryptWrapper::DecryptFile(filename_encrypted, filename_decrypted, password);
}
// Read in both the base, and the decrypted file
const Flexblock plainfile = ReadFileToBits(filename_plain);
const Flexblock decryptfile = ReadFileToBits(filename_decrypted);
// Assertion (If this fails, maybe check if the image is even readable by an image viewer)
Assert::AreEqual(
PadStringToLength(plainfile, decryptfile.length(), '0', false),
decryptfile
);
}
};
}
#include <GCrypt/GhettoCryptWrapper.h>
#include <GCrypt/Flexblock.h>
#include <GCrypt/Util.h>
#include "Catch2.h"
using namespace Leonetienne::GCrypt;
// Tests that encrypting and decrypting strings using the wrapper works.
// This test will start from scratch after encryption, to ensure EVERYTHING has to be re-calculated.
TEST_CASE(__FILE__"/Encrypting and decrypting strings works", "[Wrapper]") {
// Setup
const std::string plaintext = "Hello, World!";
const std::string password = "Der Affe will Zucker";
std::string ciphertext;
std::string decrypted;
// Encryption
ciphertext = GhettoCryptWrapper::EncryptString(plaintext, password);
// Decryption
decrypted = GhettoCryptWrapper::DecryptString(ciphertext, password);
// Assertion
REQUIRE(plaintext == decrypted);
}
/*
namespace SimpleTests
{
TEST_CLASS(GCWrapper)
{
public:
// Tests that encrypting and decrypting strings using the wrapper works.
// This test will start from scratch after encryption, to ensure EVERYTHING has to be re-calculated.
TEST_METHOD(String)
{
// Setup
const std::string plaintext = "Hello, World!";
const std::string password = "Der Affe will Zucker";
std::string ciphertext;
std::string decrypted;
// Encryption
{
ciphertext = GhettoCryptWrapper::EncryptString(plaintext, password);
}
// Decryption
{
decrypted = GhettoCryptWrapper::DecryptString(ciphertext, password);
}
// Assertion
Assert::AreEqual(
plaintext,
decrypted
);
}
// Tests that encrypting and decrypting files using the wrapper works.
// This test will start from scratch after encryption, to ensure EVERYTHING has to be re-calculated.
TEST_METHOD(File)
{
// Setup
#if defined _WIN64
const std::string testfile_dir = "../../SimpleTests/";
#elif defined _WIN32
const std::string testfile_dir = "../SimpleTests/";
#endif
const std::string filename_plain = testfile_dir + "testfile.png";
const std::string filename_encrypted = testfile_dir + "testfile.png.crypt";
const std::string filename_decrypted = testfile_dir + "testfile.png.clear.png";
const std::string password = "Der Affe will Zucker";
// Encryption
{
GhettoCryptWrapper::EncryptFile(filename_plain, filename_encrypted, password);
}
// Decryption
{
GhettoCryptWrapper::DecryptFile(filename_encrypted, filename_decrypted, password);
}
// Read in both the base, and the decrypted file
const Flexblock plainfile = ReadFileToBits(filename_plain);
const Flexblock decryptfile = ReadFileToBits(filename_decrypted);
// Assertion (If this fails, maybe check if the image is even readable by an image viewer)
Assert::AreEqual(
PadStringToLength(plainfile, decryptfile.length(), '0', false),
decryptfile
);
}
};
}
*/

View File

@ -1,110 +1,112 @@
#include "CppUnitTest.h"
#include "../GhettoCrypt/Util.h"
#include "../GhettoCrypt/Config.h"
#include <unordered_map>
#include <codecvt>
#include <sstream>
using namespace Microsoft::VisualStudio::CppUnitTestFramework;
using namespace GhettoCipher;
// We can generate passwords by just translating a decimal number to base "0123456789abcdefghijklmnopqrstuvwxyzABCDEFGHIJKLMNOPQRSTUVWXYZ"
inline std::string Base10_2_X(const unsigned long long int i, const std::string set, unsigned int padding)
{
if (set.length() == 0)
return ""; // Return empty string, if set is empty. Play stupid games, win stupid prizes.
std::stringstream ss;
if (i != 0)
{
{
unsigned long long int buf = i;
while (buf != 0)
{
const unsigned long long int mod = buf % set.length();
buf /= set.length();
ss << set[(std::size_t)mod];
}
}
{
const std::string buf = ss.str();
ss.str("");
for (long long int i = buf.length() - 1; i >= 0; i--)
ss << buf[(std::size_t)i];
}
}
else
{
ss << set[0]; // If i is 0, just pass a null-value. The algorithm would hang otherwise.
}
// Add as much null-values to the left as requested.
if (ss.str().length() < padding)
{
const std::size_t cachedLen = ss.str().length();
const std::string cachedStr = ss.str();
ss.str("");
for (std::size_t i = 0; i < padding - cachedLen; i++)
ss << set[0];
ss << cachedStr;
}
return ss.str();
}
using convert_t = std::codecvt_utf8<wchar_t>;
namespace SimpleTests
{
TEST_CLASS(Password2Key)
{
public:
// Run a few thousand random passwords through the keygen and see if we'll find a collision.
// This test passing does NOT mean that it's resistant! Maybe good, maybe shit! But if it fails, it's definitely shit.
// Already validated range: Password 0 - 1.000.000
TEST_METHOD(CollisionResistance)
{
// To test resistence set this to a high number around a million.
// This will take a LONG while to execute though (about 2.5hrs on my machine), hence why it's set so low.
constexpr std::size_t NUM_RUN_TESTS = 1000;
std::unordered_map<std::bitset<BLOCK_SIZE>, std::string> keys; // <key, password>
// Try NUM_RUN_TESTS passwords
const std::string charset = "0123456789abcdefghijklmnopqrstuvwxyzABCDEFGHIJKLMNOPQRSTUVWXYZ";
std::wstring_convert<convert_t, wchar_t> strconverter;
for (std::size_t i = 0; i < NUM_RUN_TESTS; i++)
{
// Get password
const std::string password = Base10_2_X(i, charset, 0);
// Generate key
const std::bitset<BLOCK_SIZE> newKey = PasswordToKey(password).Get();
// Check if this block is already in our map
if (keys.find(newKey) != keys.cend())
{
std::wstringstream wss;
wss << "Collision found between password \""
<< strconverter.from_bytes(password)
<< "\" and \""
<< strconverter.from_bytes(keys[newKey])
<< "\". The key is \""
<< newKey
<< "\".";
Assert::Fail(wss.str().c_str());
}
// All good? Insert it into our map
keys[newKey] = password;
}
return;
}
};
}
/*
#include "CppUnitTest.h"
#include "../GhettoCrypt/Util.h"
#include "../GhettoCrypt/Config.h"
#include <unordered_map>
#include <codecvt>
#include <sstream>
using namespace Microsoft::VisualStudio::CppUnitTestFramework;
using namespace GhettoCipher;
// We can generate passwords by just translating a decimal number to base "0123456789abcdefghijklmnopqrstuvwxyzABCDEFGHIJKLMNOPQRSTUVWXYZ"
inline std::string Base10_2_X(const unsigned long long int i, const std::string set, unsigned int padding)
{
if (set.length() == 0)
return ""; // Return empty string, if set is empty. Play stupid games, win stupid prizes.
std::stringstream ss;
if (i != 0)
{
{
unsigned long long int buf = i;
while (buf != 0)
{
const unsigned long long int mod = buf % set.length();
buf /= set.length();
ss << set[(std::size_t)mod];
}
}
{
const std::string buf = ss.str();
ss.str("");
for (long long int i = buf.length() - 1; i >= 0; i--)
ss << buf[(std::size_t)i];
}
}
else
{
ss << set[0]; // If i is 0, just pass a null-value. The algorithm would hang otherwise.
}
// Add as much null-values to the left as requested.
if (ss.str().length() < padding)
{
const std::size_t cachedLen = ss.str().length();
const std::string cachedStr = ss.str();
ss.str("");
for (std::size_t i = 0; i < padding - cachedLen; i++)
ss << set[0];
ss << cachedStr;
}
return ss.str();
}
using convert_t = std::codecvt_utf8<wchar_t>;
namespace SimpleTests
{
TEST_CLASS(Password2Key)
{
public:
// Run a few thousand random passwords through the keygen and see if we'll find a collision.
// This test passing does NOT mean that it's resistant! Maybe good, maybe shit! But if it fails, it's definitely shit.
// Already validated range: Password 0 - 1.000.000
TEST_METHOD(CollisionResistance)
{
// To test resistence set this to a high number around a million.
// This will take a LONG while to execute though (about 2.5hrs on my machine), hence why it's set so low.
constexpr std::size_t NUM_RUN_TESTS = 1000;
std::unordered_map<std::bitset<BLOCK_SIZE>, std::string> keys; // <key, password>
// Try NUM_RUN_TESTS passwords
const std::string charset = "0123456789abcdefghijklmnopqrstuvwxyzABCDEFGHIJKLMNOPQRSTUVWXYZ";
std::wstring_convert<convert_t, wchar_t> strconverter;
for (std::size_t i = 0; i < NUM_RUN_TESTS; i++)
{
// Get password
const std::string password = Base10_2_X(i, charset, 0);
// Generate key
const std::bitset<BLOCK_SIZE> newKey = PasswordToKey(password).Get();
// Check if this block is already in our map
if (keys.find(newKey) != keys.cend())
{
std::wstringstream wss;
wss << "Collision found between password \""
<< strconverter.from_bytes(password)
<< "\" and \""
<< strconverter.from_bytes(keys[newKey])
<< "\". The key is \""
<< newKey
<< "\".";
Assert::Fail(wss.str().c_str());
}
// All good? Insert it into our map
keys[newKey] = password;
}
return;
}
};
}
*/

2
GCryptLib/test/main.cpp Normal file
View File

@ -0,0 +1,2 @@
#define CATCH_CONFIG_MAIN
#include "Catch2.h"