Doxygen adjustment, and better directory name for GCryptLib

This commit is contained in:
Leonetienne
2022-05-16 22:19:20 +02:00
parent acf9dea387
commit 7c556e5b3d
26 changed files with 4 additions and 2 deletions

46
GCryptLib/CMakeLists.txt Normal file
View File

@@ -0,0 +1,46 @@
cmake_minimum_required(VERSION 3.16)
project(GCrypt)
###################
# Library project #
###################
set(CMAKE_CXX_STANDARD 17)
FILE(GLOB main_src src/*.cpp)
add_library(${PROJECT_NAME}
${main_src}
)
target_include_directories(${PROJECT_NAME} PRIVATE
include
)
#########
# Tests #
#########
FILE(GLOB test_src test/*.cpp)
add_executable(test
test/Catch2.h
${test_src}
)
target_link_libraries(test ${PROJECT_NAME})
target_include_directories(test PRIVATE
include
)
##############
# Executable #
##############
FILE(GLOB exec_src exec/*.cpp)
add_executable(exec
${exec_src}
)
target_link_libraries(exec ${PROJECT_NAME})
target_include_directories(exec PRIVATE
include
${eule_include}
)

1
GCryptLib/doxygen/.gitignore vendored Normal file
View File

@@ -0,0 +1 @@
build/

2579
GCryptLib/doxygen/doxyfig Normal file

File diff suppressed because it is too large Load Diff

View File

@@ -0,0 +1,11 @@
#!zsh
# Copy repository readme here to be used as a cover page
tail ../../readme.md -n +2 > index.md
# Run doxygen
doxygen doxyfig
# Cleanup index.md
rm -f index.md

45
GCryptLib/exec/main.cpp Normal file
View File

@@ -0,0 +1,45 @@
#include <iostream>
#include <GhettoCryptWrapper.h>
#include <SecureBitset.h>
#include <Util.h>
#include <InitializationVector.h>
using namespace Leonetienne::GCrypt;
void ExampleString() {
std::cout << "Example on how to encrypt & decrypt a string:" << std::endl;
// Get some string
const std::string input = "I am a super secret message!";
std::cout << input << std::endl;
// Encrypt
const std::string encrypted = GhettoCryptWrapper::EncryptString(input, "password1");
std::cout << encrypted << std::endl;
// Decrypt
const std::string decrypted = GhettoCryptWrapper::DecryptString(encrypted, "password1");
std::cout << decrypted << std::endl;
return;
}
void ExampleFiles() {
std::cout << "Example on how to encrypt & decrypt any file:" << std::endl;
// Encrypt
GhettoCryptWrapper::EncryptFile("main.cpp", "main.cpp.crypt", "password1");
// Decrypt
GhettoCryptWrapper::DecryptFile("main.cpp.crypt", "main.cpp.clear", "password1");
return;
}
int main() {
ExampleString();
//ExampleFiles();
return 0;
}

View File

@@ -0,0 +1,8 @@
#pragma once
#include "SecureBitset.h"
#include "Config.h"
namespace Leonetienne::GCrypt {
typedef SecureBitset<BLOCK_SIZE> Block;
}

View File

@@ -0,0 +1,39 @@
#pragma once
#include "Feistel.h"
#include "Flexblock.h"
namespace Leonetienne::GCrypt {
/** Class to apply a block cipher to messages of arbitrary length in a distributed manner
*/
class Cipher {
public:
explicit Cipher(const Block& key);
explicit Cipher(const std::string& password);
Cipher(const Cipher& other) = delete;
Cipher(Cipher&& other) noexcept = delete;
~Cipher();
//! Will set the key
void SetKey(const Block& key);
//! Will set the key from a password
void SetPassword(const std::string& password);
//! Will encipher a flexblock of data
Flexblock Encipher(const Flexblock& data, bool printProgress = false) const;
//! Will decipher a flexblock of data
Flexblock Decipher(const Flexblock& data, bool printProgress = false) const;
private:
Block key;
//! Will zero the memory used by the key
void ZeroKeyMemory();
// Initial value for cipher block chaining
Block initializationVector;
};
}

View File

@@ -0,0 +1,10 @@
#pragma once
#include <cstddef>
namespace Leonetienne::GCrypt {
// MUST BE A POWER OF 2 > 4
constexpr std::size_t BLOCK_SIZE = 512;
// MUST BE > 2
constexpr std::size_t N_ROUNDS = 64;
}

View File

@@ -0,0 +1,59 @@
#pragma once
#include "Keyset.h"
#include "Block.h"
#include "Halfblock.h"
namespace Leonetienne::GCrypt {
/** Class to perform a feistel block chipher
*/
class Feistel {
public:
explicit Feistel(const Block& key);
Feistel(const Feistel& other) = delete;
Feistel(Feistel&& other) noexcept = delete;
~Feistel();
//! Will set the seed-key for this feistel network.
//! Roundkeys will be derived from this.
void SetKey(const Block& key);
//! Will encipher a data block via the set seed-key
Block Encipher(const Block& data);
//! Will decipher a data block via the set seed-key
Block Decipher(const Block& data);
private:
//! Will run the feistel rounds, with either regular key
//! order or reversed key order
Block Run(const Block& data, bool reverseKeys);
//! Arbitrary cipher function
static Halfblock F(Halfblock m, const Block& key);
//! Split a data block into two half blocks (into L and R)
static std::pair<Halfblock, Halfblock> FeistelSplit(const Block& block);
//! Combine two half blocks (L and R) into a regular data block
static Block FeistelCombine(const Halfblock& l, const Halfblock& r);
//! Will expand a halfblock to a fullblock
static Block ExpansionFunction(const Halfblock& block);
//! Will compress a fullblock to a halfblock
static Halfblock CompressionFunction(const Block& block);
//! Substitutes four bits by static random others
static std::string SBox(const std::string& in);
//! Will generate a the round keys
void GenerateRoundKeys(const Block& seedKey);
//! Will zero the memory used by the keyset
void ZeroKeyMemory();
Keyset roundKeys;
};
}

View File

@@ -0,0 +1,7 @@
#pragma once
#include <string>
namespace Leonetienne::GCrypt {
//! A "bitset" of variable length
typedef std::string Flexblock;
}

View File

@@ -0,0 +1,32 @@
#pragma once
#include <string>
namespace Leonetienne::GCrypt {
/** This class is a wrapper to make working with the GhettoCipher
* super easy with a python-like syntax
*/
class GhettoCryptWrapper {
public:
//! Will encrypt a string and return it hexadecimally encoded.
static std::string EncryptString(const std::string& cleartext, const std::string& password);
//! Will decrypt a hexadecimally encoded string.
static std::string DecryptString(const std::string& ciphertext, const std::string& password);
//! Will encrypt a file.
//! Returns false if anything goes wrong (like, file-access).
//! @filename_in The file to be read.
//! @filename_out The file the encrypted version should be saved in.
static bool EncryptFile(const std::string& filename_in, const std::string& filename_out, const std::string& password, bool printProgressReport = false);
//! Will decrypt a file.
//! Returns false if anything goes wrong (like, file-access).
//! @filename_in The file to be read.
//! @filename_out The file the decrypted version should be saved in.
static bool DecryptFile(const std::string& filename_in, const std::string& filename_out, const std::string& password, bool printProgressReport = false);
private:
// No instanciation! >:(
GhettoCryptWrapper();
};
}

View File

@@ -0,0 +1,9 @@
#pragma once
#include "SecureBitset.h"
#include <cstdint>
#include "Config.h"
namespace Leonetienne::GCrypt {
constexpr std::size_t HALFBLOCK_SIZE = (BLOCK_SIZE / 2);
typedef SecureBitset<HALFBLOCK_SIZE> Halfblock;
}

View File

@@ -0,0 +1,17 @@
#pragma once
#include "Config.h"
#include "Block.h"
namespace Leonetienne::GCrypt {
/** Will create a sudo-random Block based on a seed
*/
class InitializationVector {
public:
InitializationVector(const Block& seed);
operator Block() const;
private:
Block iv;
};
}

View File

@@ -0,0 +1,8 @@
#pragma once
#include <array>
#include "Block.h"
#include "Config.h"
namespace Leonetienne::GCrypt {
typedef std::array<Block, N_ROUNDS> Keyset;
}

View File

@@ -0,0 +1,286 @@
#pragma once
#include <bitset>
#include <ostream>
#include <istream>
namespace Leonetienne::GCrypt {
/** Wrapper for std::bitset<T> that zeroes memory upon deletion.
* This does not include ALL methods, but the ones needed.
*
* Just creating a specialization of std::bitset<T> does not work.
*/
template <std::size_t T>
class SecureBitset {
public:
explicit SecureBitset();
explicit SecureBitset(const std::string& str);
explicit SecureBitset(const long long int i);
~SecureBitset();
bool operator==(const SecureBitset<T>& other) const;
bool operator!=(const SecureBitset<T>& other) const;
bool operator[](const std::size_t) const;
bool test(const std::size_t index) const;
bool all() const;
bool any() const;
bool none() const;
std::size_t count() const;
std::size_t size() const;
SecureBitset<T>& operator&=(const SecureBitset<T>& other);
SecureBitset<T>& operator|=(const SecureBitset<T>& other);
SecureBitset<T>& operator^=(const SecureBitset<T>& other);
SecureBitset<T> operator&(const SecureBitset<T>& other);
SecureBitset<T> operator|(const SecureBitset<T>& other);
SecureBitset<T> operator^(const SecureBitset<T>& other);
SecureBitset<T> operator~() const;
SecureBitset<T>& operator<<=(const std::size_t offset);
SecureBitset<T>& operator>>=(const std::size_t offset);
SecureBitset<T> operator<<(const std::size_t offset) const;
SecureBitset<T> operator>>(const std::size_t offset) const;
SecureBitset<T>& set();
SecureBitset<T>& set(const std::size_t index, bool value = true);
SecureBitset<T>& reset();
SecureBitset<T>& reset(const std::size_t index);
SecureBitset<T>& flip();
SecureBitset<T>& flip(const std::size_t index);
std::string to_string() const;
unsigned long to_ulong() const;
unsigned long long to_ullong() const;
std::bitset<T>& Get();
const std::bitset<T>& Get() const;
private:
std::bitset<T> bitset;
};
template<std::size_t T>
inline SecureBitset<T>::SecureBitset()
:
bitset() {
return;
}
template<std::size_t T>
inline SecureBitset<T>::SecureBitset(const std::string& str)
:
bitset(str) {
return;
}
template<std::size_t T>
inline SecureBitset<T>::SecureBitset(const long long int i)
:
bitset(i) {
return;
}
// Don't optimize the destructor out!!!
// These pragmas only work for MSVC and g++, as far as i know. Beware!!!
#if defined _WIN32 || defined _WIN64
#pragma optimize("", off )
#elif defined __GNUG__
#pragma GCC push_options
#pragma GCC optimize ("O0")
#endif
template<std::size_t T>
inline SecureBitset<T>::~SecureBitset() {
bitset.reset();
return;
}
#if defined _WIN32 || defined _WIN64
#pragma optimize("", on )
#elif defined __GNUG__
#pragma GCC pop_options
#endif
template<std::size_t T>
inline bool SecureBitset<T>::operator==(const SecureBitset<T>& other) const {
return bitset == other.bitset;
}
template<std::size_t T>
inline bool SecureBitset<T>::operator!=(const SecureBitset<T>& other) const {
return bitset != other.bitset;
}
template<std::size_t T>
inline bool SecureBitset<T>::operator[](const std::size_t index) const {
return bitset[index];
}
template<std::size_t T>
inline bool SecureBitset<T>::test(const std::size_t index) const {
return bitset.test(index);
}
template<std::size_t T>
inline bool SecureBitset<T>::all() const {
return bitset.all();
}
template<std::size_t T>
inline bool SecureBitset<T>::any() const {
return bitset.any();
}
template<std::size_t T>
inline bool SecureBitset<T>::none() const {
return bitset.none();
}
template<std::size_t T>
inline std::size_t SecureBitset<T>::count() const {
return bitset.count();
}
template<std::size_t T>
inline std::size_t SecureBitset<T>::size() const {
return bitset.count();
}
template<std::size_t T>
inline SecureBitset<T>& SecureBitset<T>::operator&=(const SecureBitset<T>& other) {
bitset &= other.bitset;
return *this;
}
template<std::size_t T>
inline SecureBitset<T>& SecureBitset<T>::operator|=(const SecureBitset<T>& other) {
bitset |= other.bitset;
return *this;
}
template<std::size_t T>
inline SecureBitset<T>& SecureBitset<T>::operator^=(const SecureBitset<T>& other) {
bitset ^= other.bitset;
return *this;
}
template<std::size_t T>
inline SecureBitset<T> SecureBitset<T>::operator&(const SecureBitset<T>& other) {
SecureBitset bs;
bs.bitset = bitset & other.bitset;
return bs;
}
template<std::size_t T>
inline SecureBitset<T> SecureBitset<T>::operator|(const SecureBitset<T>& other) {
SecureBitset bs;
bs.bitset = bitset | other.bitset;
return bs;
}
template<std::size_t T>
inline SecureBitset<T> SecureBitset<T>::operator^(const SecureBitset<T>& other) {
SecureBitset bs;
bs.bitset = bitset ^ other.bitset;
return bs;
}
template<std::size_t T>
inline SecureBitset<T> SecureBitset<T>::operator~() const {
SecureBitset bs;
bs.bitset = ~bitset;
return bs;
}
template<std::size_t T>
inline SecureBitset<T>& SecureBitset<T>::operator<<=(const std::size_t offset) {
bitset <<= offset;
return *this;
}
template<std::size_t T>
inline SecureBitset<T>& SecureBitset<T>::operator>>=(const std::size_t offset) {
bitset >>= offset;
return *this;
}
template<std::size_t T>
inline SecureBitset<T> SecureBitset<T>::operator<<(const std::size_t offset) const {
SecureBitset bs;
bs.bitset = bitset << offset;
return bs;
}
template<std::size_t T>
inline SecureBitset<T> SecureBitset<T>::operator>>(const std::size_t offset) const {
SecureBitset bs;
bs.bitset = bitset >> offset;
return bs;
}
template<std::size_t T>
inline SecureBitset<T>& SecureBitset<T>::set() {
bitset.set();
return *this;
}
template<std::size_t T>
inline SecureBitset<T>& SecureBitset<T>::set(const std::size_t index, bool value) {
bitset.set(index, value);
return *this;
}
template<std::size_t T>
inline SecureBitset<T>& SecureBitset<T>::reset() {
bitset.reset();
return *this;
}
template<std::size_t T>
inline SecureBitset<T>& SecureBitset<T>::reset(const std::size_t index) {
bitset.reset(index);
return *this;
}
template<std::size_t T>
inline SecureBitset<T>& SecureBitset<T>::flip() {
bitset.flip();
return *this;
}
template<std::size_t T>
inline SecureBitset<T>& SecureBitset<T>::flip(const std::size_t index) {
bitset.flip(index);
return *this;
}
template<std::size_t T>
inline std::string SecureBitset<T>::to_string() const {
return bitset.to_string();
}
template<std::size_t T>
inline unsigned long SecureBitset<T>::to_ulong() const {
return bitset.to_ulong();
}
template<std::size_t T>
inline unsigned long long SecureBitset<T>::to_ullong() const {
return bitset.to_ullong();
}
template<std::size_t T>
inline std::bitset<T>& SecureBitset<T>::Get() {
return bitset;
}
template<std::size_t T>
inline const std::bitset<T>& SecureBitset<T>::Get() const {
return bitset;
}
template <std::size_t T>
inline std::ostream& operator<<(std::ostream& ofs, const SecureBitset<T>& bs) {
return ofs << bs.Get();
}
template <std::size_t T>
inline std::istream& operator>>(std::istream& ifs, const SecureBitset<T>& bs) {
return ifs >> bs.Get();
}
}

309
GCryptLib/include/Util.h Normal file
View File

@@ -0,0 +1,309 @@
#pragma once
#include <bitset>
#include <sstream>
#include <fstream>
#include <cstring>
#include "SecureBitset.h"
#include "Block.h"
#include "Flexblock.h"
#include "Config.h"
#include "Cipher.h"
#include "InitializationVector.h"
namespace Leonetienne::GCrypt {
//! Mod-operator that works with negative values
inline int Mod(const int numerator, const int denominator) {
return (denominator + (numerator % denominator)) % denominator;
}
//! Will perform a wrapping left-bitshift on a bitset
template <std::size_t T>
inline SecureBitset<T> Shiftl(const SecureBitset<T>& bits, const std::size_t amount) {
std::stringstream ss;
const std::string bitss = bits.to_string();
for (std::size_t i = 0; i < bitss.size(); i++) {
ss << bitss[Mod((int)(i + amount), (int)bitss.size())];
}
return SecureBitset<T>(ss.str());
}
//! Will perform a wrapping right-bitshift on a bitset
template <std::size_t T>
inline SecureBitset<T> Shiftr(const SecureBitset<T>& bits, const std::size_t amount) {
std::stringstream ss;
const std::string bitss = bits.to_string();
for (std::size_t i = 0; i < bitss.size(); i++) {
ss << bitss[Mod((i - amount), bitss.size())];
}
return SecureBitset<T>(ss.str());
}
//! Will pad a string to a set length with a certain character
inline std::string PadStringToLength(const std::string& str, const std::size_t len, const char pad, const bool padLeft = true) {
// Fast-reject: Already above padded length
if (str.length() >= len) {
return str;
}
std::stringstream ss;
// Pad left:
if (padLeft) {
for (std::size_t i = 0; i < len - str.size(); i++) {
ss << pad;
}
ss << str;
}
// Pad right:
else {
ss << str;
for (std::size_t i = 0; i < len - str.size(); i++) {
ss << pad;
}
}
return ss.str();
}
//! Will convert a string to a fixed-size data block
inline Block StringToBitblock(const std::string& s) {
std::stringstream ss;
for (std::size_t i = 0; i < s.size(); i++) {
ss << std::bitset<8>(s[i]);
}
// Pad rest with zeores
return Block(PadStringToLength(ss.str(), 128, '0', false));
}
//! Will convert a string to a flexible data block
inline Flexblock StringToBits(const std::string& s) {
std::stringstream ss;
for (std::size_t i = 0; i < s.size(); i++) {
ss << std::bitset<8>(s[i]);
}
return Flexblock(ss.str());
}
//! Will convert a fixed-size data block to a bytestring
inline std::string BitblockToBytes(const Block& bits) {
std::stringstream ss;
const std::string bitstring = bits.to_string();
for (std::size_t i = 0; i < BLOCK_SIZE; i += 8) {
ss << (char)std::bitset<8>(bitstring.substr(i, 8)).to_ulong();
}
return ss.str();
}
//! Will convert a fixed-size data block to a string
//! The difference to BitblockToBytes() is, that it strips excess nullbytes
inline std::string BitblockToString(const Block& bits) {
// Decode to bytes
std::string text = BitblockToBytes(bits);
// Dümp excess nullbytes
text.resize(strlen(text.data()));
return text;
}
//! Will convert a flexible data block to a bytestring
inline std::string BitsToBytes(const Flexblock& bits) {
std::stringstream ss;
const std::string bitstring = bits;
for (std::size_t i = 0; i < bits.size(); i += 8) {
ss << (char)std::bitset<8>(bitstring.substr(i, 8)).to_ulong();
}
return ss.str();
}
//! Will convert a flexible data block to a string
//! The difference to BitsToBytes() is, that it strips excess nullbytes
inline std::string BitsToString(const Flexblock& bits) {
// Decode to bytes
std::string text = BitsToBytes(bits);
// Dümp excess nullbytes
text.resize(strlen(text.data()));
return text;
}
//! Turns a fixed-size data block into a hex-string
inline std::string BitblockToHexstring(const Block& b) {
std::stringstream ss;
const std::string charset = "0123456789abcdef";
const std::string bstr = b.to_string();
for (std::size_t i = 0; i < bstr.size(); i += 4) {
ss << charset[std::bitset<4>(bstr.substr(i, 4)).to_ulong()];
}
return ss.str();
}
//! Turns a flexible data block into a hex-string
inline std::string BitsToHexstring(const Flexblock& b) {
std::stringstream ss;
const std::string charset = "0123456789abcdef";
const std::string bstr = b;
for (std::size_t i = 0; i < bstr.size(); i += 4) {
ss << charset[std::bitset<4>(bstr.substr(i, 4)).to_ulong()];
}
return ss.str();
}
//! Turns a hex string into a fixed-size data block
inline Block HexstringToBitblock(const std::string& hexstring) {
std::stringstream ss;
for (std::size_t i = 0; i < hexstring.size(); i++) {
const char c = hexstring[i];
// Get value
std::size_t value;
if ((c >= '0') && (c <= '9')) {
// Is it a number?
value = ((std::size_t)c - '0') + 0;
}
else if ((c >= 'a') && (c <= 'f')) {
// Else, it is a lowercase letter
value = ((std::size_t)c - 'a') + 10;
}
else {
throw std::logic_error("non-hex string detected in HexstringToBits()");
}
// Append to our bits
ss << std::bitset<4>(value);
}
return Block(ss.str());
}
//! Turns a hex string into a flexible data block
inline Flexblock HexstringToBits(const std::string& hexstring) {
std::stringstream ss;
for (std::size_t i = 0; i < hexstring.size(); i++) {
const char c = hexstring[i];
// Get value
std::size_t value;
if ((c >= '0') && (c <= '9')) {
// Is it a number?
value = ((std::size_t)c - '0') + 0;
}
else if ((c >= 'a') && (c <= 'f')) {
// Else, it is a lowercase letter
value = ((std::size_t)c - 'a') + 10;
}
else {
throw std::logic_error("non-hex string detected in HexstringToBits()");
}
// Append to our bits
ss << std::bitset<4>(value);
}
return ss.str();
}
//! Creates a key of size BLOCK_SIZE from a password of arbitrary length.
//! Note that if your password is shorter (in bits) than BLOCK_SIZE, the rest of the key will be padded with 0 (see next line!).
//! To provide a better initial key, (and to get rid of padding zeroes), the raw result (b) will be xor'd with an initialization vector based on b.
//! : return b ^ iv(b)
inline Block PasswordToKey(const std::string& in) {
// Let's provide a nice initial value to be sure even a password of length 0 results in a proper key
Block b = InitializationVector(StringToBitblock("3J7IipfQTDJbO8jtasz9PgWui6faPaEMOuVuAqyhB1S2CRcLw5caawewgDUEG1WN"));
// Segment the password in segments of key-size, and xor them together.
for (std::size_t i = 0; i < in.size(); i += BLOCK_SIZE / 8) {
const Block fragment = StringToBitblock(
PadStringToLength(in.substr(i, BLOCK_SIZE / 8), BLOCK_SIZE / 8, 0, false)
);
// To provide confusion, xor the blocks together
// To provide diffusion, hash fragment to fragment' first
b ^= Block(Cipher(fragment).Encipher(fragment.to_string()));
}
return b;
}
//! Will reduce a flexblock (they are of arbitrary length) to a single block.
//! This single block should change completely, if a single bit in the input flexblock changes anywhere.
inline Block ReductionFunction_Flexblock2Block(const Flexblock& in) {
Block b; // No initialization vector needed here
// Segment the input in segments of BLOCK_SIZE, and xor them together.
for (std::size_t i = 0; i < in.size(); i += BLOCK_SIZE) {
const Block fragment = Block(PadStringToLength(in.substr(i, BLOCK_SIZE), BLOCK_SIZE, 0, false));
// To provide confusion, xor the blocks together
// To provide diffusion, hash fragment to fragment' first
b ^= Block(Cipher(fragment).Encipher(fragment.to_string()));
}
return b;
}
//! Will read a file into a flexblock
inline Flexblock ReadFileToBits(const std::string& filepath) {
// Read file
std::ifstream ifs(filepath, std::ios::binary);
if (!ifs.good()) {
throw std::runtime_error("Unable to open ifilestream!");
}
std::stringstream ss;
std::copy(
std::istreambuf_iterator<char>(ifs),
std::istreambuf_iterator<char>(),
std::ostreambuf_iterator<char>(ss)
);
ifs.close();
const std::string bytes = ss.str();
// Convert bytes to bits
return StringToBits(bytes);
}
//! Will save bits to a binary file
inline void WriteBitsToFile(const std::string& filepath, const Flexblock& bits) {
// Convert bits to bytes
const std::string bytes = BitsToBytes(bits);
// Write bits to file
std::ofstream ofs(filepath, std::ios::binary);
if (!ofs.good()) {
throw std::runtime_error("Unable to open ofilestream!");
}
ofs.write(bytes.data(), bytes.length());
ofs.close();
return;
}
}

View File

@@ -0,0 +1,3 @@
#pragma once
#define GHETTOCRYPT_VERSION 0.21

135
GCryptLib/src/Cipher.cpp Normal file
View File

@@ -0,0 +1,135 @@
#include <iostream>
#include <vector>
#include "Cipher.h"
#include "Util.h"
#include "InitializationVector.h"
namespace Leonetienne::GCrypt {
Cipher::Cipher(const Block& key)
:
key { key },
initializationVector(InitializationVector(key)) {
return;
}
Cipher::Cipher(const std::string& password)
:
key { PasswordToKey(password) },
initializationVector(InitializationVector(key)) {
return;
}
Cipher::~Cipher() {
// Clear key memory
ZeroKeyMemory();
return;
}
void Cipher::SetKey(const Block& key) {
ZeroKeyMemory();
this->key = key;
return;
}
void Cipher::SetPassword(const std::string& password) {
ZeroKeyMemory();
key = PasswordToKey(password);
return;
}
Flexblock Cipher::Encipher(const Flexblock& data, bool printProgress) const {
// Split cleartext into blocks
std::vector<Block> blocks;
for (std::size_t i = 0; i < data.size(); i += BLOCK_SIZE) {
blocks.push_back(Block(
PadStringToLength(data.substr(i, BLOCK_SIZE), BLOCK_SIZE, '0', false))
);
}
// Encrypt individual blocks using cipher block chaining
Feistel feistel(key);
for (std::size_t i = 0; i < blocks.size(); i++) {
// Print reports if desired. If we have > 1000 blocks, print one report every 100 blocks. Otherwise for every 10th block.
if ((i % ((blocks.size() > 1000)? 100 : 10) == 0) && (printProgress)) {
std::cout << "Encrypting... (Block " << i << " / " << blocks.size() << " - " << ((float)i*100 / blocks.size()) << "%)" << std::endl;
}
const Block& lastBlock = (i>0) ? blocks[i-1] : initializationVector;
blocks[i] = feistel.Encipher(blocks[i] ^ lastBlock); // Xor last cipher block with new clear text block before E()
}
// Concatenate ciphertext blocks back into a flexblock
std::stringstream ss;
for (Block& b : blocks) {
ss << b;
}
// Return it
return ss.str();
}
Flexblock Cipher::Decipher(const Flexblock& data, bool printProgress) const {
// Split ciphertext into blocks
std::vector<Block> blocks;
for (std::size_t i = 0; i < data.size(); i += BLOCK_SIZE) {
blocks.push_back(Block(
PadStringToLength(data.substr(i, BLOCK_SIZE), BLOCK_SIZE, '0', false))
);
}
// Decrypt individual blocks
Feistel feistel(key);
// We can't do this in-loop for decryption, because we are decrypting the blocks in-place.
Block lastBlock = initializationVector;
for (std::size_t i = 0; i < blocks.size(); i++) {
// Print reports if desired. If we have > 1000 blocks, print one report every 100 blocks. Otherwise for every 10th block.
if ((i % ((blocks.size() > 1000) ? 100 : 10) == 0) && (printProgress)) {
std::cout << "Decrypting... (Block " << i << " / " << blocks.size() << " - " << ((float)i*100/ blocks.size()) << "%)" << std::endl;
}
Block tmpCopy = blocks[i];
blocks[i] = feistel.Decipher(blocks[i]) ^ lastBlock; // Decipher cipher block [i] and then xor it with the last cipher block [i-1] we've had
lastBlock = std::move(tmpCopy);
}
// Concatenate ciphertext blocks back into a flexblock
std::stringstream ss;
for (Block& b : blocks) {
ss << b;
}
// Return it
return ss.str();
}
// These pragmas only work for MSVC and g++, as far as i know. Beware!!!
#if defined _WIN32 || defined _WIN64
#pragma optimize("", off )
#elif defined __GNUG__
#pragma GCC push_options
#pragma GCC optimize ("O0")
#endif
void Cipher::ZeroKeyMemory() {
key.reset();
return;
}
#if defined _WIN32 || defined _WIN64
#pragma optimize("", on )
#elif defined __GNUG__
#pragma GCC pop_options
#endif
}

264
GCryptLib/src/Feistel.cpp Normal file
View File

@@ -0,0 +1,264 @@
#include <unordered_map>
#include "Feistel.h"
#include "Util.h"
#include "Config.h"
namespace Leonetienne::GCrypt {
Feistel::Feistel(const Block& key) {
SetKey(key);
return;
}
Feistel::~Feistel() {
ZeroKeyMemory();
return;
}
void Feistel::SetKey(const Block& key) {
GenerateRoundKeys(key);
return;
}
Block Feistel::Encipher(const Block& data) {
return Run(data, false);
}
Block Feistel::Decipher(const Block& data) {
return Run(data, true);
}
Block Feistel::Run(const Block& data, bool reverseKeys) {
const auto splitData = FeistelSplit(data);
Halfblock l = splitData.first;
Halfblock r = splitData.second;
Halfblock tmp;
for (std::size_t i = 0; i < N_ROUNDS; i++) {
// Calculate key index
std::size_t keyIndex;
if (reverseKeys) {
keyIndex = N_ROUNDS - i - 1;
}
else {
keyIndex = i;
}
// Do a feistel round
tmp = r;
r = l ^ F(r, roundKeys[keyIndex]);
l = tmp;
}
// Block has finished de*ciphering.
// Let's generate a new set of round keys.
GenerateRoundKeys((Block)roundKeys.back());
return FeistelCombine(r, l);
}
Halfblock Feistel::F(Halfblock m, const Block& key) {
// Made-up F function
// Expand to full bitwidth
Block m_expanded = ExpansionFunction(m);
// Shift to left by 1
m_expanded = Shiftl(m_expanded, 1);
// Xor with key
m_expanded ^= key;
// Non-linearly apply subsitution boxes
std::stringstream ss;
const std::string m_str = m_expanded.to_string();
for (std::size_t i = 0; i < BLOCK_SIZE; i += 4) {
ss << SBox(m_str.substr(i, 4));
}
m_expanded = Block(ss.str());
// Return the compressed version
return CompressionFunction(m_expanded);
}
std::pair<Halfblock, Halfblock> Feistel::FeistelSplit(const Block& block) {
const std::string bits = block.to_string();
Halfblock l(bits.substr(0, bits.size() / 2));
Halfblock r(bits.substr(bits.size() / 2));
return std::make_pair(l, r);
}
Block Feistel::FeistelCombine(const Halfblock& l, const Halfblock& r) {
return Block(l.to_string() + r.to_string());
}
Block Feistel::ExpansionFunction(const Halfblock& block) {
std::stringstream ss;
const std::string bits = block.to_string();
std::unordered_map<std::string, std::string> expansionMap;
expansionMap["00"] = "1101";
expansionMap["01"] = "1000";
expansionMap["10"] = "0010";
expansionMap["11"] = "0111";
// We have to double the bits!
for (std::size_t i = 0; i < HALFBLOCK_SIZE; i += 2) {
const std::string sub = bits.substr(i, 2);
ss << expansionMap[sub];
}
return Block(ss.str());
}
Halfblock Feistel::CompressionFunction(const Block& block) {
std::stringstream ss;
const std::string bits = block.to_string();
std::unordered_map<std::string, std::string> compressionMap;
compressionMap["0000"] = "10";
compressionMap["0001"] = "01";
compressionMap["0010"] = "10";
compressionMap["0011"] = "10";
compressionMap["0100"] = "11";
compressionMap["0101"] = "01";
compressionMap["0110"] = "00";
compressionMap["0111"] = "11";
compressionMap["1000"] = "01";
compressionMap["1001"] = "00";
compressionMap["1010"] = "11";
compressionMap["1011"] = "00";
compressionMap["1100"] = "11";
compressionMap["1101"] = "10";
compressionMap["1110"] = "00";
compressionMap["1111"] = "01";
// We have to half the bits!
for (std::size_t i = 0; i < BLOCK_SIZE; i += 4) {
const std::string sub = bits.substr(i, 4);
ss << compressionMap[sub];
}
return Halfblock(ss.str());
}
std::string Feistel::SBox(const std::string& in) {
static std::unordered_map<std::string, std::string> subMap;
static bool mapInitialized = false;
if (!mapInitialized) {
subMap["0000"] = "1100";
subMap["0001"] = "1000";
subMap["0010"] = "0001";
subMap["0011"] = "0111";
subMap["0100"] = "1011";
subMap["0101"] = "0011";
subMap["0110"] = "1101";
subMap["0111"] = "1111";
subMap["1000"] = "0000";
subMap["1001"] = "1010";
subMap["1010"] = "0100";
subMap["1011"] = "1001";
subMap["1100"] = "0010";
subMap["1101"] = "1110";
subMap["1110"] = "0101";
subMap["1111"] = "0110";
mapInitialized = true;
}
return subMap[in];
}
void Feistel::GenerateRoundKeys(const Block& seedKey) {
// Clear initial key memory
ZeroKeyMemory();
roundKeys = Keyset();
// Derive the initial two round keys
// Compress- substitute, and expand the seed key to form the initial and the second-initial round key
// This action is non-linear and irreversible, and thus strenghtens security.
Halfblock compressedSeed1 = CompressionFunction(seedKey);
Halfblock compressedSeed2 = CompressionFunction(Shiftl(seedKey, 1)); // Shifting one key by 1 will result in a completely different compression
// To add further confusion, let's shift seed1 by 1 aswell (after compression, but before substitution)
// but only if the total number of bits set are a multiple of 3
// if it is a multiple of 4, we'll shift it by 1 into the opposite direction
const std::size_t setBits1 = compressedSeed1.count();
if (setBits1 % 4 == 0) {
compressedSeed1 = Shiftr(compressedSeed1, 1);
}
else if (setBits1 % 3 == 0) {
compressedSeed1 = Shiftl(compressedSeed1, 1);
}
// Now apply substitution
std::stringstream ssKey1;
std::stringstream ssKey2;
const std::string bitsKey1 = compressedSeed1.to_string();
const std::string bitsKey2 = compressedSeed2.to_string();
for (std::size_t i = 0; i < HALFBLOCK_SIZE; i += 4) {
ssKey1 << SBox(bitsKey1.substr(i, 4));
ssKey2 << SBox(bitsKey2.substr(i, 4));
}
compressedSeed1 = Halfblock(ssKey1.str());
compressedSeed2 = Halfblock(ssKey2.str());
// Now extrapolate them to BLOCK_SIZE (key size) again
// Xor with the original seed key to get rid of the repititions caused by the expansion
roundKeys[0] = ExpansionFunction(compressedSeed1) ^ seedKey;
roundKeys[1] = ExpansionFunction(compressedSeed2) ^ seedKey;
// Now derive all other round keys
for (std::size_t i = 2; i < roundKeys.size(); i++) {
// Initialize new round key with last round key
Block newKey = roundKeys[i - 1];
// Shift to left by how many bits are set, modulo 8
newKey = Shiftl(newKey, newKey.count() % 8); // This action is irreversible
// Split into two halfblocks,
// apply F() to one halfblock with rk[i-2],
// xor the other one with it
// and put them back together
auto halfkeys = FeistelSplit(newKey);
Halfblock halfkey1 = F(halfkeys.first, roundKeys[i - 2]);
Halfblock halfkey2 = halfkeys.second ^ halfkey1; // I know this is reversible, but it helps to diffuse future round keys.
roundKeys[i] = FeistelCombine(halfkey1, halfkey2);
}
return;
}
// These pragmas only work for MSVC and g++, as far as i know. Beware!!!
#if defined _WIN32 || defined _WIN64
#pragma optimize("", off )
#elif defined __GNUG__
#pragma GCC push_options
#pragma GCC optimize ("O0")
#endif
void Feistel::ZeroKeyMemory() {
for (Block& key : roundKeys) {
key.reset();
}
return;
}
#if defined _WIN32 || defined _WIN64
#pragma optimize("", on )
#elif defined __GNUG__
#pragma GCC pop_options
#endif
}

View File

@@ -0,0 +1,88 @@
#include "GhettoCryptWrapper.h"
#include "Cipher.h"
#include "Util.h"
namespace Leonetienne::GCrypt {
std::string GhettoCryptWrapper::EncryptString(const std::string& cleartext, const std::string& password) {
// Instanciate our cipher and supply a key
const Block key = PasswordToKey(password);
Cipher cipher(key);
// Recode the ascii-string to bits
const Flexblock cleartext_bits = StringToBits(cleartext);
// Encrypt our cleartext bits
const Flexblock ciphertext_bits = cipher.Encipher(cleartext_bits);
// Recode the ciphertext bits to a hex-string
const std::string ciphertext = BitsToHexstring(ciphertext_bits);
// Return it
return ciphertext;
}
std::string GhettoCryptWrapper::DecryptString(const std::string& ciphertext, const std::string& password) {
// Instanciate our cipher and supply a key
const Block key = PasswordToKey(password);
Cipher cipher(key);
// Recode the hex-string to bits
const Flexblock ciphertext_bits = HexstringToBits(ciphertext);
// Decrypt the ciphertext bits
const std::string cleartext_bits = cipher.Decipher(ciphertext_bits);
// Recode the cleartext bits to an ascii-string
const std::string cleartext = BitsToString(cleartext_bits);
// Return it
return cleartext;
}
bool GhettoCryptWrapper::EncryptFile(const std::string& filename_in, const std::string& filename_out, const std::string& password, bool printProgressReport) {
try {
// Read the file to bits
const Flexblock cleartext_bits = ReadFileToBits(filename_in);
// Instanciate our cipher and supply a key
const Block key = PasswordToKey(password);
Cipher cipher(key);
// Encrypt our cleartext bits
const Flexblock ciphertext_bits = cipher.Encipher(cleartext_bits, printProgressReport);
// Write our ciphertext bits to file
WriteBitsToFile(filename_out, ciphertext_bits);
return true;
}
catch (std::runtime_error&) {
return false;
}
}
bool GhettoCryptWrapper::DecryptFile(const std::string& filename_in, const std::string& filename_out, const std::string& password, bool printProgressReport) {
try {
// Read the file to bits
const Flexblock ciphertext_bits = ReadFileToBits(filename_in);
// Instanciate our cipher and supply a key
const Block key = PasswordToKey(password);
Cipher cipher(key);
// Decrypt the ciphertext bits
const Flexblock cleartext_bits = cipher.Decipher(ciphertext_bits, printProgressReport);
// Write our cleartext bits to file
WriteBitsToFile(filename_out, cleartext_bits);
return true;
}
catch (std::runtime_error&) {
return false;
}
}
}

View File

@@ -0,0 +1,17 @@
#include "InitializationVector.h"
#include "Feistel.h"
namespace Leonetienne::GCrypt {
InitializationVector::InitializationVector(const Block& seed) {
// We'll generate our initialization vector by encrypting our seed with itself as a key
// iv = E(M=seed, K=seed)
iv = Feistel(seed).Encipher(seed);
}
InitializationVector::operator Block() const {
return iv;
}
}

17965
GCryptLib/test/Catch2.h Normal file

File diff suppressed because it is too large Load Diff

View File

@@ -0,0 +1,230 @@
#include "CppUnitTest.h"
#include "../GhettoCrypt/Cipher.h"
#include "../GhettoCrypt/Util.h"
using namespace Microsoft::VisualStudio::CppUnitTestFramework;
using namespace GhettoCipher;
// THESE TESTS ASSUME BLOCK_SIZE == 512
namespace SimpleTests
{
TEST_CLASS(EncryptEqualsDecrypt)
{
public:
// Tests that encrypting a message of exactly BLOCK_SIZE yields the exact message back
TEST_METHOD(SingleBlock_NoPadding)
{
// Instanciate our cipher and supply a key
const Block key = PasswordToKey("1234");
const Cipher cipher(key);
// Recode the ascii-string to bits
const Flexblock cleartext_bits =
"1011110011010110000010110001111000111010111101001010100100011101"
"0101110101010010100000110100001000011000111010001001110101111111"
"1110110101100101110001010101011110001010000010111110011011010111"
"1100110100111000000011100101010100110010001110010011000010111001"
"0000010000010000011001111010011110111001000000000110101000110001"
"0110111110110110100000010100000011010001000011100100111001001011"
"1101100100000100010000001011100010010001101111100100101100010001"
"0000011110010110111010110110111110011110011010001100100111110101";
// Encrypt our cleartext bits
const Flexblock ciphertext_bits = cipher.Encipher(cleartext_bits);
// Decipher it again
const Flexblock decryptedBits = cipher.Decipher(ciphertext_bits);
// Assert that the decrypted text equals the plaintext
Assert::AreEqual(
cleartext_bits,
decryptedBits
);
}
// Tests that encrypting a message of less than BLOCK_SIZE yields the exact message plus zero-padding back
TEST_METHOD(SingleBlock_Padding)
{
// Instanciate our cipher and supply a key
const Block key = PasswordToKey("1234");
const Cipher cipher(key);
// Recode the ascii-string to bits
const Flexblock cleartext_bits =
"1011110011010110000010110001111000111010111101001010100100011101"
"0101110101010010100000110100001000011000111010001001110101111111"
"1110110101100101110001010101011110001010000010111110011011010111"
"1100110100111000000011100101010100110010001110010011000010111001"
"0000010000010000011001111010011110111001000000000110101000110001"
"0110111110110110100000010100000011010001000011100100111001001011"
"1101100100000100";
const Flexblock cleartext_bits_EXPECTED_RESULT =
"1011110011010110000010110001111000111010111101001010100100011101"
"0101110101010010100000110100001000011000111010001001110101111111"
"1110110101100101110001010101011110001010000010111110011011010111"
"1100110100111000000011100101010100110010001110010011000010111001"
"0000010000010000011001111010011110111001000000000110101000110001"
"0110111110110110100000010100000011010001000011100100111001001011"
"1101100100000100000000000000000000000000000000000000000000000000"
"0000000000000000000000000000000000000000000000000000000000000000";
// Encrypt our cleartext bits
const Flexblock ciphertext_bits = cipher.Encipher(cleartext_bits);
// Decipher it again
const Flexblock decryptedBits = cipher.Decipher(ciphertext_bits);
// Assert that the decrypted text equals the plaintext
Assert::AreEqual(
cleartext_bits_EXPECTED_RESULT,
decryptedBits
);
}
// Tests that a decrypted ciphertext equals its plaintrext version, using a cleartext that requires A LOT of blocks
TEST_METHOD(MultiBlock_NoPadding)
{
// Instanciate our cipher and supply a key
const Block key = PasswordToKey("1234");
const Cipher cipher(key);
// Recode the ascii-string to bits
const Flexblock cleartext_bits =
"1011110011010110000010110001111000111010111101001010100100011101"
"0101110101010010100000110100001000011000111010001001110101111111"
"1110110101100101110001010101011110001010000010111110011011010111"
"1100110100111000000011100101010100110010001110010011000010111001"
"0000010000010000011001111010011110111001000000000110101000110001"
"0110111110110110100000010100000011010001000011100100111001001011"
"1101100100000100010000001011100010010001101111100100101100010001"
"0000011110010110111010110110111110011110011010001100100111110101"
"1000010010000000000100101011110001000101101101100000010011111011"
"1011111010110100100111100111110011100001111101111110000110001100"
"0001000111000111101110000111011011101010100010100101100111010100"
"0101111110110010110000111111011001101110101101100100100011000100"
"1000110010101001000100001001101000011111101011111100100000100101"
"1100001100111001011111001101000111011101011101000110010110110110"
"0111001010011010010000010110000110010101101100101110111100100011"
"0010111110011100010100000101100101110101101011110100100000110110"
"1001101110101001001111111000010100011100100000101000111101101111"
"0101111011110001101010111010001000111010101111001101100100100100"
"1110110111001100011010110000101000011001011100101100111101110000"
"1010101111011110000111011011011110000111010110110111111010101010"
"0111100101111001010111101000001010100000111010111100111011111001"
"0110111000000110100011011100101101010101101000010010011111100100"
"0010111000001011101110000110010011101001111010100111110111110101"
"1110111000000000101011000100101010000110110111101010011001111010"
"1101011110001110000011010111001100001100101000000101000101000010"
"0101000011011111010010110010000010101100001110011000110111110111"
"1110010101011110111001100010110101101011100111100011101010001011"
"0101110010100110101100111100010000111101111100000111000110110110"
"1001100111000000011010100000011101011000010010011010001011110000"
"1100100111111001001000011100110000011110001100000000010000001001"
"1110000000110010000010011010100011011011000000000111110000110111"
"0101110011001101010110010100011001110110000110010001100110011111";
// Encrypt our cleartext bits
const Flexblock ciphertext_bits = cipher.Encipher(cleartext_bits);
// Decipher it again
const Flexblock decryptedBits = cipher.Decipher(ciphertext_bits);
// Assert that the decrypted text equals the plaintext
Assert::AreEqual(
cleartext_bits,
decryptedBits
);
}
// Tests that a decrypted ciphertext equals its plaintrext version, using a cleartext that requires A LOT of blocks
TEST_METHOD(MultiBlock_Padding)
{
// Instanciate our cipher and supply a key
const Block key = PasswordToKey("1234");
const Cipher cipher(key);
// Recode the ascii-string to bits
const Flexblock cleartext_bits =
"1011110011010110000010110001111000111010111101001010100100011101"
"0101110101010010100000110100001000011000111010001001110101111111"
"1110110101100101110001010101011110001010000010111110011011010111"
"1100110100111000000011100101010100110010001110010011000010111001"
"0000010000010000011001111010011110111001000000000110101000110001"
"0110111110110110100000010100000011010001000011100100111001001011"
"1101100100000100010000001011100010010001101111100100101100010001"
"0000011110010110111010110110111110011110011010001100100111110101"
"1000010010000000000100101011110001000101101101100000010011111011"
"1011111010110100100111100111110011100001111101111110000110001100"
"0001000111000111101110000111011011101010100010100101100111010100"
"0101111110110010110000111111011001101110101101100100100011000100"
"1000110010101001000100001001101000011111101011111100100000100101"
"1100001100111001011111001101000111011101011101000110010110110110"
"0111001010011010010000010110000110010101101100101110111100100011"
"0010111110011100010100000101100101110101101011110100100000110110"
"1001101110101001001111111000010100011100100000101000111101101111"
"0101111011110001101010111010001000111010101111001101100100100100"
"1110110111001100011010110000101000011001011100101100111101110000"
"1010101111011110000111011011011110000111010110110111111010101010"
"0111100101111001010111101000001010100000111010111100111011111001"
"0110111000000110100011011100101101010101101000010010011111100100"
"0010111000001011101110000110010011101001111010100111110111110101"
"1110111000000000101011000100101010000110110111101010011001111010"
"1101011110001110000011010111001100001100101000000101000101000010"
"0101000011011111010010110010000010101100001110011000110111110111"
"1110010101011110111001100010110101101011100111100011101010001011"
"0101110010100110101100111100010000111101111100000111000110110110"
"1001100111000000011010100000011101011000010010011010001011110000"
"1100100111111001001000011100110000011110001100000000010000001001"
"11100000001100100000100110101000110110110000000001111100001";
const Flexblock cleartext_bits_EXPECTED_RESULT =
"1011110011010110000010110001111000111010111101001010100100011101"
"0101110101010010100000110100001000011000111010001001110101111111"
"1110110101100101110001010101011110001010000010111110011011010111"
"1100110100111000000011100101010100110010001110010011000010111001"
"0000010000010000011001111010011110111001000000000110101000110001"
"0110111110110110100000010100000011010001000011100100111001001011"
"1101100100000100010000001011100010010001101111100100101100010001"
"0000011110010110111010110110111110011110011010001100100111110101"
"1000010010000000000100101011110001000101101101100000010011111011"
"1011111010110100100111100111110011100001111101111110000110001100"
"0001000111000111101110000111011011101010100010100101100111010100"
"0101111110110010110000111111011001101110101101100100100011000100"
"1000110010101001000100001001101000011111101011111100100000100101"
"1100001100111001011111001101000111011101011101000110010110110110"
"0111001010011010010000010110000110010101101100101110111100100011"
"0010111110011100010100000101100101110101101011110100100000110110"
"1001101110101001001111111000010100011100100000101000111101101111"
"0101111011110001101010111010001000111010101111001101100100100100"
"1110110111001100011010110000101000011001011100101100111101110000"
"1010101111011110000111011011011110000111010110110111111010101010"
"0111100101111001010111101000001010100000111010111100111011111001"
"0110111000000110100011011100101101010101101000010010011111100100"
"0010111000001011101110000110010011101001111010100111110111110101"
"1110111000000000101011000100101010000110110111101010011001111010"
"1101011110001110000011010111001100001100101000000101000101000010"
"0101000011011111010010110010000010101100001110011000110111110111"
"1110010101011110111001100010110101101011100111100011101010001011"
"0101110010100110101100111100010000111101111100000111000110110110"
"1001100111000000011010100000011101011000010010011010001011110000"
"1100100111111001001000011100110000011110001100000000010000001001"
"1110000000110010000010011010100011011011000000000111110000100000"
"0000000000000000000000000000000000000000000000000000000000000000";
// Encrypt our cleartext bits
const Flexblock ciphertext_bits = cipher.Encipher(cleartext_bits);
// Decipher it again
const Flexblock decryptedBits = cipher.Decipher(ciphertext_bits);
// Assert that the decrypted text equals the plaintext
Assert::AreEqual(
cleartext_bits_EXPECTED_RESULT,
decryptedBits
);
}
};
}

View File

@@ -0,0 +1,81 @@
#include "CppUnitTest.h"
#include "../GhettoCrypt/GhettoCryptWrapper.h"
#include "../GhettoCrypt/Flexblock.h"
#include "../GhettoCrypt/Util.h"
using namespace Microsoft::VisualStudio::CppUnitTestFramework;
using namespace GhettoCipher;
namespace SimpleTests
{
TEST_CLASS(GCWrapper)
{
public:
// Tests that encrypting and decrypting strings using the wrapper works.
// This test will start from scratch after encryption, to ensure EVERYTHING has to be re-calculated.
TEST_METHOD(String)
{
// Setup
const std::string plaintext = "Hello, World!";
const std::string password = "Der Affe will Zucker";
std::string ciphertext;
std::string decrypted;
// Encryption
{
ciphertext = GhettoCryptWrapper::EncryptString(plaintext, password);
}
// Decryption
{
decrypted = GhettoCryptWrapper::DecryptString(ciphertext, password);
}
// Assertion
Assert::AreEqual(
plaintext,
decrypted
);
}
// Tests that encrypting and decrypting files using the wrapper works.
// This test will start from scratch after encryption, to ensure EVERYTHING has to be re-calculated.
TEST_METHOD(File)
{
// Setup
#if defined _WIN64
const std::string testfile_dir = "../../SimpleTests/";
#elif defined _WIN32
const std::string testfile_dir = "../SimpleTests/";
#endif
const std::string filename_plain = testfile_dir + "testfile.png";
const std::string filename_encrypted = testfile_dir + "testfile.png.crypt";
const std::string filename_decrypted = testfile_dir + "testfile.png.clear.png";
const std::string password = "Der Affe will Zucker";
// Encryption
{
GhettoCryptWrapper::EncryptFile(filename_plain, filename_encrypted, password);
}
// Decryption
{
GhettoCryptWrapper::DecryptFile(filename_encrypted, filename_decrypted, password);
}
// Read in both the base, and the decrypted file
const Flexblock plainfile = ReadFileToBits(filename_plain);
const Flexblock decryptfile = ReadFileToBits(filename_decrypted);
// Assertion (If this fails, maybe check if the image is even readable by an image viewer)
Assert::AreEqual(
PadStringToLength(plainfile, decryptfile.length(), '0', false),
decryptfile
);
}
};
}

View File

@@ -0,0 +1,110 @@
#include "CppUnitTest.h"
#include "../GhettoCrypt/Util.h"
#include "../GhettoCrypt/Config.h"
#include <unordered_map>
#include <codecvt>
#include <sstream>
using namespace Microsoft::VisualStudio::CppUnitTestFramework;
using namespace GhettoCipher;
// We can generate passwords by just translating a decimal number to base "0123456789abcdefghijklmnopqrstuvwxyzABCDEFGHIJKLMNOPQRSTUVWXYZ"
inline std::string Base10_2_X(const unsigned long long int i, const std::string set, unsigned int padding)
{
if (set.length() == 0)
return ""; // Return empty string, if set is empty. Play stupid games, win stupid prizes.
std::stringstream ss;
if (i != 0)
{
{
unsigned long long int buf = i;
while (buf != 0)
{
const unsigned long long int mod = buf % set.length();
buf /= set.length();
ss << set[(std::size_t)mod];
}
}
{
const std::string buf = ss.str();
ss.str("");
for (long long int i = buf.length() - 1; i >= 0; i--)
ss << buf[(std::size_t)i];
}
}
else
{
ss << set[0]; // If i is 0, just pass a null-value. The algorithm would hang otherwise.
}
// Add as much null-values to the left as requested.
if (ss.str().length() < padding)
{
const std::size_t cachedLen = ss.str().length();
const std::string cachedStr = ss.str();
ss.str("");
for (std::size_t i = 0; i < padding - cachedLen; i++)
ss << set[0];
ss << cachedStr;
}
return ss.str();
}
using convert_t = std::codecvt_utf8<wchar_t>;
namespace SimpleTests
{
TEST_CLASS(Password2Key)
{
public:
// Run a few thousand random passwords through the keygen and see if we'll find a collision.
// This test passing does NOT mean that it's resistant! Maybe good, maybe shit! But if it fails, it's definitely shit.
// Already validated range: Password 0 - 1.000.000
TEST_METHOD(CollisionResistance)
{
// To test resistence set this to a high number around a million.
// This will take a LONG while to execute though (about 2.5hrs on my machine), hence why it's set so low.
constexpr std::size_t NUM_RUN_TESTS = 1000;
std::unordered_map<std::bitset<BLOCK_SIZE>, std::string> keys; // <key, password>
// Try NUM_RUN_TESTS passwords
const std::string charset = "0123456789abcdefghijklmnopqrstuvwxyzABCDEFGHIJKLMNOPQRSTUVWXYZ";
std::wstring_convert<convert_t, wchar_t> strconverter;
for (std::size_t i = 0; i < NUM_RUN_TESTS; i++)
{
// Get password
const std::string password = Base10_2_X(i, charset, 0);
// Generate key
const std::bitset<BLOCK_SIZE> newKey = PasswordToKey(password).Get();
// Check if this block is already in our map
if (keys.find(newKey) != keys.cend())
{
std::wstringstream wss;
wss << "Collision found between password \""
<< strconverter.from_bytes(password)
<< "\" and \""
<< strconverter.from_bytes(keys[newKey])
<< "\". The key is \""
<< newKey
<< "\".";
Assert::Fail(wss.str().c_str());
}
// All good? Insert it into our map
keys[newKey] = password;
}
return;
}
};
}

BIN
GCryptLib/test/testfile.png Normal file

Binary file not shown.

After

Width:  |  Height:  |  Size: 9.5 KiB