Even assumed it's a good cipher, it's implementation leaves a lot to be desired in terms of being cryptographically secure. The whole leaving partial keys in ram- thingy...
Download the `.h` and `.cpp` file from [INCLUDE/](https://github.com/Leonetienne/GhettoCrypt/tree/master/INCLUDE) and add them to your projects files. *Single-header-magic*.
If you want to do more complex stuff, use the cipher-class [`GhettoCipher::Cipher`](https://github.com/Leonetienne/GhettoCrypt/blob/master/GhettoCrypt/Cipher.h) aswell as the conversion methods in [Util.h](https://github.com/Leonetienne/GhettoCrypt/blob/master/GhettoCrypt/Util.h). This way you can cipher on bitlevel. Examples on how to do this are in [GhettoCryptWrapper.cpp](https://github.com/Leonetienne/GhettoCrypt/blob/master/GhettoCrypt/GhettoCryptWrapper.cpp).
<sup>\*</sup> A key is always of size `BLOCK_SIZE`. The default block size is 512 (bit), but you can easily change it in [Config.h](https://github.com/Leonetienne/GhettoCrypt/blob/master/GhettoCrypt/Config.h) or wherever it'll be put in the INCLUDE/*.cpp. `BLOCK_SIZE` is also the minimal output length!
* [CBC] This block cipher makes use of cipher block chaining. Nothing special.
* [IV] The initialization vector is indeed a bit of special sauce, as it depends on your key instead of being static. It is generated by running the feistel network on *E(m=seed, k=seed)*.
* [RRKM] Never heard of a mode like this, so i've named it **R**olling**R**ound**K**ey**M**ode. This basically means that the round key extrapolation is carried out continously over EVERY round on EVERY block. So in addition to *M<sub>i</sub>* being dependent on *E(M<sub>i-1</sub>,K<sub>i-1,0</sub>)* due to CBC, so is now *K<sub>i</sub>* dependent on *K<sub>i-1,r</sub>* with *r* being the maximum number of extrapolated keys within a call of *E()*. This is handled within the feistel network class, as an instance lifecycle sees all blocks, if you want to take a peek.