Eule/INCLUDE/Eule.cpp

3713 lines
80 KiB
C++

#include "Eule.h"
/*** ../Eule/Collider.cpp ***/
/*** ../Eule/Math.cpp ***/
#include <array>
using namespace Eule;
int Math::Mod(const int numerator, const int denominator)
{
if (denominator == 0)
throw std::logic_error("Division by zero");
// Quick optimizations:
// -> 0/n is always 0
if (numerator == 0)
return 0;
// -> operator% works for a > 0 && b > 0
if (denominator > 0 && numerator > 0)
return numerator % denominator;
// Else: generalized formula
return (denominator + (numerator % denominator)) % denominator;
}
double Math::Oscillate(const double a, const double b, const double counter, const double speed)
{
return (sin(counter * speed * PI - HALF_PI) * 0.5 + 0.5) * (b - a) + a;
}
/*** ../Eule/Matrix4x4.cpp ***/
//#define _EULE_NO_INTRINSICS_
#ifndef _EULE_NO_INTRINSICS_
#include <immintrin.h>
#endif
using namespace Eule;
Matrix4x4::Matrix4x4()
{
// Create identity matrix
for (std::size_t i = 0; i < 4; i++)
for (std::size_t j = 0; j < 4; j++)
v[i][j] = double(i == j);
return;
}
Matrix4x4::Matrix4x4(const Matrix4x4& other)
{
v = other.v;
return;
}
Matrix4x4::Matrix4x4(Matrix4x4&& other) noexcept
{
v = std::move(other.v);
return;
}
Matrix4x4 Matrix4x4::operator*(const Matrix4x4& other) const
{
Matrix4x4 newMatrix;
newMatrix.p = 1;
#ifndef _EULE_NO_INTRINSICS_
/* <= Matrix3x3 multiplication => */
// Load matrix components
__m256d __va1 = _mm256_set_pd(v[0][0], v[0][0], v[0][0], v[1][0]);
__m256d __va2 = _mm256_set_pd(v[1][0], v[1][0], v[2][0], v[2][0]);
__m256d __oa1 = _mm256_set_pd(other[0][0], other[0][1], other[0][2], other[0][0]);
__m256d __oa2 = _mm256_set_pd(other[0][1], other[0][2], other[0][0], other[0][1]);
__m256d __vb1 = _mm256_set_pd(v[0][1], v[0][1], v[0][1], v[1][1]);
__m256d __vb2 = _mm256_set_pd(v[1][1], v[1][1], v[2][1], v[2][1]);
__m256d __ob1 = _mm256_set_pd(other[1][0], other[1][1], other[1][2], other[1][0]);
__m256d __ob2 = _mm256_set_pd(other[1][1], other[1][2], other[1][0], other[1][1]);
__m256d __vc1 = _mm256_set_pd(v[0][2], v[0][2], v[0][2], v[1][2]);
__m256d __vc2 = _mm256_set_pd(v[1][2], v[1][2], v[2][2], v[2][2]);
__m256d __oc1 = _mm256_set_pd(other[2][0], other[2][1], other[2][2], other[2][0]);
__m256d __oc2 = _mm256_set_pd(other[2][1], other[2][2], other[2][0], other[2][1]);
// Initialize sums
__m256d __sum1 = _mm256_set1_pd(0);
__m256d __sum2 = _mm256_set1_pd(0);
// Let's multiply-add them together
// First, the first block
__sum1 = _mm256_fmadd_pd(__va1, __oa1, __sum1);
__sum1 = _mm256_fmadd_pd(__vb1, __ob1, __sum1);
__sum1 = _mm256_fmadd_pd(__vc1, __oc1, __sum1);
// Then the second block
__sum2 = _mm256_fmadd_pd(__va2, __oa2, __sum2);
__sum2 = _mm256_fmadd_pd(__vb2, __ob2, __sum2);
__sum2 = _mm256_fmadd_pd(__vc2, __oc2, __sum2);
// Retrieve results
double sum1[4];
double sum2[4];
_mm256_storeu_pd(sum1, __sum1);
_mm256_storeu_pd(sum2, __sum2);
// Apply results
// Block 1
newMatrix[0][0] = sum1[3];
newMatrix[0][1] = sum1[2];
newMatrix[0][2] = sum1[1];
newMatrix[1][0] = sum1[0];
// Block 2
newMatrix[1][1] = sum2[3];
newMatrix[1][2] = sum2[2];
newMatrix[2][0] = sum2[1];
newMatrix[2][1] = sum2[0];
// Does not fit in the intrinsic calculation. Might just calculate 'by hand'.
newMatrix[2][2] = (v[2][0] * other[0][2]) + (v[2][1] * other[1][2]) + (v[2][2] * other[2][2]);
/* <= Translation component => */
// Load translation components into registers
__m256d __transSelf = _mm256_set_pd(0, l, h, d);
__m256d __transOther = _mm256_set_pd(0, other.l, other.h, other.d);
// Let's add them
__m256d __sum = _mm256_add_pd(__transSelf, __transOther);
// Retrieve results
double sum[4];
_mm256_storeu_pd(sum, __sum);
// Apply them
newMatrix.d = sum[0];
newMatrix.h = sum[1];
newMatrix.l = sum[2];
#else
// Rotation, Scaling
newMatrix[0][0] = (v[0][0] * other[0][0]) + (v[0][1] * other[1][0]) + (v[0][2] * other[2][0]);
newMatrix[0][1] = (v[0][0] * other[0][1]) + (v[0][1] * other[1][1]) + (v[0][2] * other[2][1]);
newMatrix[0][2] = (v[0][0] * other[0][2]) + (v[0][1] * other[1][2]) + (v[0][2] * other[2][2]);
newMatrix[1][0] = (v[1][0] * other[0][0]) + (v[1][1] * other[1][0]) + (v[1][2] * other[2][0]);
newMatrix[1][1] = (v[1][0] * other[0][1]) + (v[1][1] * other[1][1]) + (v[1][2] * other[2][1]);
newMatrix[1][2] = (v[1][0] * other[0][2]) + (v[1][1] * other[1][2]) + (v[1][2] * other[2][2]);
newMatrix[2][0] = (v[2][0] * other[0][0]) + (v[2][1] * other[1][0]) + (v[2][2] * other[2][0]);
newMatrix[2][1] = (v[2][0] * other[0][1]) + (v[2][1] * other[1][1]) + (v[2][2] * other[2][1]);
newMatrix[2][2] = (v[2][0] * other[0][2]) + (v[2][1] * other[1][2]) + (v[2][2] * other[2][2]);
// Translation
newMatrix[0][3] = v[0][3] + other[0][3];
newMatrix[1][3] = v[1][3] + other[1][3];
newMatrix[2][3] = v[2][3] + other[2][3];
#endif
return newMatrix;
}
void Matrix4x4::operator*=(const Matrix4x4& other)
{
*this = *this * other;
return;
}
Matrix4x4 Matrix4x4::operator/(const Matrix4x4& other) const
{
return *this * other.Inverse3x3();
}
void Matrix4x4::operator/=(const Matrix4x4& other)
{
*this = *this * other.Inverse3x3();
return;
}
Matrix4x4 Matrix4x4::operator*(const double scalar) const
{
Matrix4x4 m;
#ifndef _EULE_NO_INTRINSICS_
// Load matrix rows
__m256d __row0 = _mm256_set_pd(v[0][3], v[0][2], v[0][1], v[0][0]);
__m256d __row1 = _mm256_set_pd(v[1][3], v[1][2], v[1][1], v[1][0]);
__m256d __row2 = _mm256_set_pd(v[2][3], v[2][2], v[2][1], v[2][0]);
__m256d __row3 = _mm256_set_pd(v[3][3], v[3][2], v[3][1], v[3][0]);
// Load scalar
__m256d __scalar = _mm256_set1_pd(scalar);
// Scale values
__m256d __sr0 = _mm256_mul_pd(__row0, __scalar);
__m256d __sr1 = _mm256_mul_pd(__row1, __scalar);
__m256d __sr2 = _mm256_mul_pd(__row2, __scalar);
__m256d __sr3 = _mm256_mul_pd(__row3, __scalar);
// Extract results
_mm256_storeu_pd(m.v[0].data(), __sr0);
_mm256_storeu_pd(m.v[1].data(), __sr1);
_mm256_storeu_pd(m.v[2].data(), __sr2);
_mm256_storeu_pd(m.v[3].data(), __sr3);
#else
for (std::size_t x = 0; x < 4; x++)
for (std::size_t y = 0; y < 4; y++)
m[x][y] = v[x][y] * scalar;
#endif
return m;
}
void Matrix4x4::operator*=(const double scalar)
{
*this = *this * scalar;
return;
}
Matrix4x4 Matrix4x4::operator/(const double denominator) const
{
const double precomputeDivision = 1.0 / denominator;
return *this * precomputeDivision;
}
void Matrix4x4::operator/=(const double denominator)
{
*this = *this / denominator;
return;
}
Matrix4x4 Matrix4x4::operator+(const Matrix4x4& other) const
{
Matrix4x4 m;
#ifndef _EULE_NO_INTRINSICS_
// Load matrix rows
__m256d __row0a = _mm256_set_pd(v[0][3], v[0][2], v[0][1], v[0][0]);
__m256d __row1a = _mm256_set_pd(v[1][3], v[1][2], v[1][1], v[1][0]);
__m256d __row2a = _mm256_set_pd(v[2][3], v[2][2], v[2][1], v[2][0]);
__m256d __row3a = _mm256_set_pd(v[3][3], v[3][2], v[3][1], v[3][0]);
__m256d __row0b = _mm256_set_pd(other[0][3], other[0][2], other[0][1], other[0][0]);
__m256d __row1b = _mm256_set_pd(other[1][3], other[1][2], other[1][1], other[1][0]);
__m256d __row2b = _mm256_set_pd(other[2][3], other[2][2], other[2][1], other[2][0]);
__m256d __row3b = _mm256_set_pd(other[3][3], other[3][2], other[3][1], other[3][0]);
// Add rows
__m256d __sr0 = _mm256_add_pd(__row0a, __row0b);
__m256d __sr1 = _mm256_add_pd(__row1a, __row1b);
__m256d __sr2 = _mm256_add_pd(__row2a, __row2b);
__m256d __sr3 = _mm256_add_pd(__row3a, __row3b);
// Extract results
_mm256_storeu_pd(m.v[0].data(), __sr0);
_mm256_storeu_pd(m.v[1].data(), __sr1);
_mm256_storeu_pd(m.v[2].data(), __sr2);
_mm256_storeu_pd(m.v[3].data(), __sr3);
#else
for (std::size_t x = 0; x < 4; x++)
for (std::size_t y = 0; y < 4; y++)
m[x][y] = v[x][y] + other[x][y];
#endif
return m;
}
void Matrix4x4::operator+=(const Matrix4x4& other)
{
#ifndef _EULE_NO_INTRINSICS_
// Doing it again is a tad directer, and thus faster. We avoid an intermittent Matrix4x4 instance
// Load matrix rows
__m256d __row0a = _mm256_set_pd(v[0][3], v[0][2], v[0][1], v[0][0]);
__m256d __row1a = _mm256_set_pd(v[1][3], v[1][2], v[1][1], v[1][0]);
__m256d __row2a = _mm256_set_pd(v[2][3], v[2][2], v[2][1], v[2][0]);
__m256d __row3a = _mm256_set_pd(v[3][3], v[3][2], v[3][1], v[3][0]);
__m256d __row0b = _mm256_set_pd(other[0][3], other[0][2], other[0][1], other[0][0]);
__m256d __row1b = _mm256_set_pd(other[1][3], other[1][2], other[1][1], other[1][0]);
__m256d __row2b = _mm256_set_pd(other[2][3], other[2][2], other[2][1], other[2][0]);
__m256d __row3b = _mm256_set_pd(other[3][3], other[3][2], other[3][1], other[3][0]);
// Add rows
__m256d __sr0 = _mm256_add_pd(__row0a, __row0b);
__m256d __sr1 = _mm256_add_pd(__row1a, __row1b);
__m256d __sr2 = _mm256_add_pd(__row2a, __row2b);
__m256d __sr3 = _mm256_add_pd(__row3a, __row3b);
// Extract results
_mm256_storeu_pd(v[0].data(), __sr0);
_mm256_storeu_pd(v[1].data(), __sr1);
_mm256_storeu_pd(v[2].data(), __sr2);
_mm256_storeu_pd(v[3].data(), __sr3);
#else
*this = *this + other;
#endif
return;
}
Matrix4x4 Matrix4x4::operator-(const Matrix4x4& other) const
{
Matrix4x4 m;
#ifndef _EULE_NO_INTRINSICS_
// Load matrix rows
__m256d __row0a = _mm256_set_pd(v[0][3], v[0][2], v[0][1], v[0][0]);
__m256d __row1a = _mm256_set_pd(v[1][3], v[1][2], v[1][1], v[1][0]);
__m256d __row2a = _mm256_set_pd(v[2][3], v[2][2], v[2][1], v[2][0]);
__m256d __row3a = _mm256_set_pd(v[3][3], v[3][2], v[3][1], v[3][0]);
__m256d __row0b = _mm256_set_pd(other[0][3], other[0][2], other[0][1], other[0][0]);
__m256d __row1b = _mm256_set_pd(other[1][3], other[1][2], other[1][1], other[1][0]);
__m256d __row2b = _mm256_set_pd(other[2][3], other[2][2], other[2][1], other[2][0]);
__m256d __row3b = _mm256_set_pd(other[3][3], other[3][2], other[3][1], other[3][0]);
// Subtract rows
__m256d __sr0 = _mm256_sub_pd(__row0a, __row0b);
__m256d __sr1 = _mm256_sub_pd(__row1a, __row1b);
__m256d __sr2 = _mm256_sub_pd(__row2a, __row2b);
__m256d __sr3 = _mm256_sub_pd(__row3a, __row3b);
// Extract results
_mm256_storeu_pd(m.v[0].data(), __sr0);
_mm256_storeu_pd(m.v[1].data(), __sr1);
_mm256_storeu_pd(m.v[2].data(), __sr2);
_mm256_storeu_pd(m.v[3].data(), __sr3);
#else
for (std::size_t x = 0; x < 4; x++)
for (std::size_t y = 0; y < 4; y++)
m[x][y] = v[x][y] - other[x][y];
#endif
return m;
}
void Matrix4x4::operator-=(const Matrix4x4& other)
{
#ifndef _EULE_NO_INTRINSICS_
// Doing it again is a tad directer, and thus faster. We avoid an intermittent Matrix4x4 instance
// Load matrix rows
__m256d __row0a = _mm256_set_pd(v[0][3], v[0][2], v[0][1], v[0][0]);
__m256d __row1a = _mm256_set_pd(v[1][3], v[1][2], v[1][1], v[1][0]);
__m256d __row2a = _mm256_set_pd(v[2][3], v[2][2], v[2][1], v[2][0]);
__m256d __row3a = _mm256_set_pd(v[3][3], v[3][2], v[3][1], v[3][0]);
__m256d __row0b = _mm256_set_pd(other[0][3], other[0][2], other[0][1], other[0][0]);
__m256d __row1b = _mm256_set_pd(other[1][3], other[1][2], other[1][1], other[1][0]);
__m256d __row2b = _mm256_set_pd(other[2][3], other[2][2], other[2][1], other[2][0]);
__m256d __row3b = _mm256_set_pd(other[3][3], other[3][2], other[3][1], other[3][0]);
// Subtract rows
__m256d __sr0 = _mm256_sub_pd(__row0a, __row0b);
__m256d __sr1 = _mm256_sub_pd(__row1a, __row1b);
__m256d __sr2 = _mm256_sub_pd(__row2a, __row2b);
__m256d __sr3 = _mm256_sub_pd(__row3a, __row3b);
// Extract results
_mm256_storeu_pd(v[0].data(), __sr0);
_mm256_storeu_pd(v[1].data(), __sr1);
_mm256_storeu_pd(v[2].data(), __sr2);
_mm256_storeu_pd(v[3].data(), __sr3);
#else
* this = *this - other;
#endif
return;
}
std::array<double, 4>& Matrix4x4::operator[](std::size_t y)
{
return v[y];
}
const std::array<double, 4>& Matrix4x4::operator[](std::size_t y) const
{
return v[y];
}
void Matrix4x4::operator=(const Matrix4x4& other)
{
v = other.v;
return;
}
void Matrix4x4::operator=(Matrix4x4&& other) noexcept
{
v = std::move(other.v);
return;
}
bool Matrix4x4::operator==(const Matrix4x4& other)
{
return v == other.v;
}
bool Matrix4x4::operator!=(const Matrix4x4& other)
{
return !operator==(other);
}
bool Matrix4x4::operator==(const Matrix4x4& other) const
{
return v == other.v;
}
bool Matrix4x4::operator!=(const Matrix4x4& other) const
{
return !operator==(other);
}
const Vector3d Matrix4x4::GetTranslationComponent() const
{
return Vector3d(d, h, l);
}
void Matrix4x4::SetTranslationComponent(const Vector3d& trans)
{
d = trans.x;
h = trans.y;
l = trans.z;
return;
}
Matrix4x4 Matrix4x4::DropTranslationComponents() const
{
Matrix4x4 m(*this);
m.d = 0;
m.h = 0;
m.l = 0;
return m;
}
Matrix4x4 Matrix4x4::Transpose3x3() const
{
Matrix4x4 trans(*this); // Keep other cells
for (std::size_t i = 0; i < 3; i++)
for (std::size_t j = 0; j < 3; j++)
trans[j][i] = v[i][j];
return trans;
}
Matrix4x4 Matrix4x4::Transpose4x4() const
{
Matrix4x4 trans;
for (std::size_t i = 0; i < 4; i++)
for (std::size_t j = 0; j < 4; j++)
trans[j][i] = v[i][j];
return trans;
}
Matrix4x4 Matrix4x4::Multiply4x4(const Matrix4x4& o) const
{
Matrix4x4 m;
m[0][0] = (v[0][0]*o[0][0]) + (v[0][1]*o[1][0]) + (v[0][2]*o[2][0]) + (v[0][3]*o[3][0]);
m[0][1] = (v[0][0]*o[0][1]) + (v[0][1]*o[1][1]) + (v[0][2]*o[2][1]) + (v[0][3]*o[3][1]);
m[0][2] = (v[0][0]*o[0][2]) + (v[0][1]*o[1][2]) + (v[0][2]*o[2][2]) + (v[0][3]*o[3][2]);
m[0][3] = (v[0][0]*o[0][3]) + (v[0][1]*o[1][3]) + (v[0][2]*o[2][3]) + (v[0][3]*o[3][3]);
m[1][0] = (v[1][0]*o[0][0]) + (v[1][1]*o[1][0]) + (v[1][2]*o[2][0]) + (v[1][3]*o[3][0]);
m[1][1] = (v[1][0]*o[0][1]) + (v[1][1]*o[1][1]) + (v[1][2]*o[2][1]) + (v[1][3]*o[3][1]);
m[1][2] = (v[1][0]*o[0][2]) + (v[1][1]*o[1][2]) + (v[1][2]*o[2][2]) + (v[1][3]*o[3][2]);
m[1][3] = (v[1][0]*o[0][3]) + (v[1][1]*o[1][3]) + (v[1][2]*o[2][3]) + (v[1][3]*o[3][3]);
m[2][0] = (v[2][0]*o[0][0]) + (v[2][1]*o[1][0]) + (v[2][2]*o[2][0]) + (v[2][3]*o[3][0]);
m[2][1] = (v[2][0]*o[0][1]) + (v[2][1]*o[1][1]) + (v[2][2]*o[2][1]) + (v[2][3]*o[3][1]);
m[2][2] = (v[2][0]*o[0][2]) + (v[2][1]*o[1][2]) + (v[2][2]*o[2][2]) + (v[2][3]*o[3][2]);
m[2][3] = (v[2][0]*o[0][3]) + (v[2][1]*o[1][3]) + (v[2][2]*o[2][3]) + (v[2][3]*o[3][3]);
m[3][0] = (v[3][0]*o[0][0]) + (v[3][1]*o[1][0]) + (v[3][2]*o[2][0]) + (v[3][3]*o[3][0]);
m[3][1] = (v[3][0]*o[0][1]) + (v[3][1]*o[1][1]) + (v[3][2]*o[2][1]) + (v[3][3]*o[3][1]);
m[3][2] = (v[3][0]*o[0][2]) + (v[3][1]*o[1][2]) + (v[3][2]*o[2][2]) + (v[3][3]*o[3][2]);
m[3][3] = (v[3][0]*o[0][3]) + (v[3][1]*o[1][3]) + (v[3][2]*o[2][3]) + (v[3][3]*o[3][3]);
return m;
}
Matrix4x4 Matrix4x4::GetCofactors(std::size_t p, std::size_t q, std::size_t n) const
{
if (n > 4)
throw std::runtime_error("Dimension out of range! 0 <= n <= 4");
Matrix4x4 cofs;
std::size_t i = 0;
std::size_t j = 0;
for (std::size_t y = 0; y < n; y++)
for (std::size_t x = 0; x < n; x++)
{
if ((y != p) && (x != q))
{
cofs[i][j] = v[y][x];
j++;
}
if (j == n - 1)
{
j = 0;
i++;
}
}
return cofs;
}
/*
* BEGIN_REF
* https://www.geeksforgeeks.org/adjoint-inverse-matrix/
*/
double Matrix4x4::Determinant(std::size_t n) const
{
if (n > 4)
throw std::runtime_error("Dimension out of range! 0 <= n <= 4");
double d = 0;
double sign = 1;
if (n == 1)
return v[0][0];
for (std::size_t x = 0; x < n; x++)
{
Matrix4x4 cofs = GetCofactors(0, x, n);
d += sign * v[0][x] * cofs.Determinant(n - 1);
sign = -sign;
}
return d;
}
Matrix4x4 Matrix4x4::Adjoint(std::size_t n) const
{
if (n > 4)
throw std::runtime_error("Dimension out of range! 0 <= n <= 4");
Matrix4x4 adj;
double sign = 1;
for (std::size_t i = 0; i < n; i++)
for (std::size_t j = 0; j < n; j++)
{
Matrix4x4 cofs = GetCofactors(i, j, n);
// sign of adj[j][i] positive if sum of row
// and column indexes is even.
sign = ((i + j) % 2 == 0) ? 1 : -1;
// Interchanging rows and columns to get the
// transpose of the cofactor matrix
adj[j][i] = sign * (cofs.Determinant(n - 1));
}
return adj;
}
Matrix4x4 Matrix4x4::Inverse3x3() const
{
Matrix4x4 inv;
double det = Determinant(3);
if (det == 0.0)
throw std::runtime_error("Matrix3x3 not inversible!");
Matrix4x4 adj = Adjoint(3);
for (std::size_t i = 0; i < 3; i++)
for (std::size_t j = 0; j < 3; j++)
inv[i][j] = adj[i][j] / det;
inv.SetTranslationComponent(-GetTranslationComponent());
return inv;
}
Matrix4x4 Matrix4x4::Inverse4x4() const
{
Matrix4x4 inv;
double det = Determinant(4);
if (det == 0.0)
throw std::runtime_error("Matrix4x4 not inversible!");
Matrix4x4 adj = Adjoint(4);
for (std::size_t i = 0; i < 4; i++)
for (std::size_t j = 0; j < 4; j++)
inv[i][j] = adj[i][j] / det;
return inv;
}
/*
* END REF
*/
bool Matrix4x4::IsInversible3x3() const
{
return (Determinant(3) != 0);
}
bool Matrix4x4::IsInversible4x4() const
{
return (Determinant(4) != 0);
}
bool Matrix4x4::Similar(const Matrix4x4& other, double epsilon) const
{
for (std::size_t i = 0; i < 4; i++)
for (std::size_t j = 0; j < 4; j++)
if (!Math::Similar(v[i][j], other[i][j], epsilon))
return false;
return true;
}
namespace Eule
{
std::ostream& operator<< (std::ostream& os, const Matrix4x4& m)
{
os << std::endl;
for (std::size_t y = 0; y < 4; y++)
{
for (std::size_t x = 0; x < 4; x++)
os << " | " << m[y][x];
os << " |" << std::endl;
}
return os;
}
std::wostream& operator<< (std::wostream& os, const Matrix4x4& m)
{
os << std::endl;
for (std::size_t y = 0; y < 4; y++)
{
for (std::size_t x = 0; x < 4; x++)
os << L" | " << m[y][x];
os << L" |" << std::endl;
}
return os;
}
}
/*** ../Eule/Quaternion.cpp ***/
#include <algorithm>
#include <functional>
//#define _EULE_NO_INTRINSICS_
#ifndef _EULE_NO_INTRINSICS_
#include <immintrin.h>
#endif
using namespace Eule;
Quaternion::Quaternion()
{
v = Vector4d(0, 0, 0, 1);
return;
}
Quaternion::Quaternion(const Vector4d values)
{
v = values;
return;
}
Quaternion::Quaternion(const Quaternion& q)
{
v = q.v;
return;
}
Quaternion::Quaternion(const Vector3d eulerAngles)
{
Vector3d eulerRad = eulerAngles * Deg2Rad;
#ifndef _EULE_NO_INTRINSICS_
// Calculate sine and cos values
__m256d __vec = _mm256_set_pd(0, eulerRad.z, eulerRad.y, eulerRad.x);
__vec = _mm256_mul_pd(__vec, _mm256_set1_pd(0.5));
__m256d __cos;
__m256d __sin = _mm256_sincos_pd(&__cos, __vec);
// Create multiplication vectors
double sin[4];
double cos[4];
_mm256_storeu_pd(sin, __sin);
_mm256_storeu_pd(cos, __cos);
__m256d __a = _mm256_set_pd(cos[0], cos[0], sin[0], cos[0]);
__m256d __b = _mm256_set_pd(cos[1], sin[1], cos[1], cos[1]);
__m256d __c = _mm256_set_pd(sin[2], cos[2], cos[2], cos[2]);
__m256d __d = _mm256_set_pd(sin[0], sin[0], cos[0], sin[0]);
__m256d __e = _mm256_set_pd(sin[1], cos[1], sin[1], sin[1]);
__m256d __f = _mm256_set_pd(cos[2], sin[2], sin[2], sin[2]);
// Multiply them
__m256d __abc;
__abc = _mm256_mul_pd(__a, __b);
__abc = _mm256_mul_pd(__abc, __c);
__m256d __def;
__def = _mm256_mul_pd(__d, __e);
__def = _mm256_mul_pd(__def, __f);
// Extract results
double abc[4];
double def[4];
_mm256_storeu_pd(abc, __abc);
_mm256_storeu_pd(def, __def);
// Sum them up
v.w = abc[0] + def[0];
v.x = abc[1] - def[1];
v.y = abc[2] + def[2];
v.z = abc[3] - def[3];
#else
const double cy = cos(eulerRad.z * 0.5);
const double sy = sin(eulerRad.z * 0.5);
const double cp = cos(eulerRad.y * 0.5);
const double sp = sin(eulerRad.y * 0.5);
const double cr = cos(eulerRad.x * 0.5);
const double sr = sin(eulerRad.x * 0.5);
v.w = cr * cp * cy + sr * sp * sy;
v.x = sr * cp * cy - cr * sp * sy;
v.y = cr * sp * cy + sr * cp * sy;
v.z = cr * cp * sy - sr * sp * cy;
#endif
return;
}
Quaternion::~Quaternion()
{
return;
}
Quaternion Quaternion::operator= (const Quaternion& q)
{
InvalidateCache();
v = q.v;
return (*this);
}
Quaternion Quaternion::operator* (const Quaternion& q) const
{
return Quaternion(Vector4d(
v.w * q.v.x + v.x * q.v.w + v.y * q.v.z - v.z * q.v.y,
v.w * q.v.y + v.y * q.v.w + v.z * q.v.x - v.x * q.v.z,
v.w * q.v.z + v.z * q.v.w + v.x * q.v.y - v.y * q.v.x,
v.w * q.v.w - v.x * q.v.x - v.y * q.v.y - v.z * q.v.z
));
}
Quaternion Quaternion::operator*(const double scale) const
{
return Quaternion(v * scale);
}
Quaternion Quaternion::operator/ (Quaternion& q) const
{
return ((*this) * (q.Inverse()));
}
Quaternion& Quaternion::operator*= (const Quaternion& q)
{
InvalidateCache();
Vector4d bufr = v;
v.x = bufr.w * q.v.x + bufr.x * q.v.w + bufr.y * q.v.z - bufr.z * q.v.y; // x
v.y = bufr.w * q.v.y + bufr.y * q.v.w + bufr.z * q.v.x - bufr.x * q.v.z; // y
v.z = bufr.w * q.v.z + bufr.z * q.v.w + bufr.x * q.v.y - bufr.y * q.v.x; // z
v.w = bufr.w * q.v.w - bufr.x * q.v.x - bufr.y * q.v.y - bufr.z * q.v.z; // w
return (*this);
}
Quaternion& Quaternion::operator*=(const double scale)
{
InvalidateCache();
v *= scale;
return (*this);
}
Quaternion& Quaternion::operator/= (const Quaternion& q)
{
InvalidateCache();
(*this) = (*this) * q.Inverse();
return (*this);
}
Vector3d Quaternion::operator*(const Vector3d& p) const
{
return RotateVector(p);
}
bool Quaternion::operator== (const Quaternion& q) const
{
return (v.Similar(q.v)) || (v.Similar(q.v * -1));
}
bool Quaternion::operator!= (const Quaternion& q) const
{
return (!v.Similar(q.v)) && (!v.Similar(q.v * -1));
}
Quaternion Quaternion::Inverse() const
{
const std::lock_guard<std::mutex> lock(lock_inverseCache);
if (!isCacheUpToDate_inverse)
{
cache_inverse = (Conjugate() * (1.0 / v.SqrMagnitude())).v;
isCacheUpToDate_inverse = true;
}
return Quaternion(cache_inverse);
}
Quaternion Quaternion::Conjugate() const
{
return Quaternion(Vector4d(-v.x, -v.y, -v.z, v.w));
}
Quaternion Quaternion::UnitQuaternion() const
{
return (*this) * (1.0 / v.Magnitude());
}
Vector3d Quaternion::RotateVector(const Vector3d& vec) const
{
Quaternion pure(Vector4d(vec.x, vec.y, vec.z, 0));
//Quaternion f = Conjugate() * pure * (*this);
//Quaternion f = Inverse().Conjugate() * pure * (this->Inverse());
Quaternion f = Inverse() * pure * (*this);
Vector3d toRet;
toRet.x = f.v.x;
toRet.y = f.v.y;
toRet.z = f.v.z;
return toRet;
}
Vector3d Quaternion::ToEulerAngles() const
{
const std::lock_guard<std::mutex> lock(lock_eulerCache);
if (!isCacheUpToDate_euler)
{
Vector3d euler;
// roll (x-axis rotation)
double sinr_cosp = 2.0 * (v.w * v.x + v.y * v.z);
double cosr_cosp = 1.0 - 2.0 * (v.x * v.x + v.y * v.y);
euler.x = std::atan2(sinr_cosp, cosr_cosp);
// pitch (y-axis rotation)
double sinp = 2.0 * (v.w * v.y - v.z * v.x);
if (std::abs(sinp) >= 1)
euler.y = std::copysign(PI / 2, sinp); // use 90 degrees if out of range
else
euler.y = std::asin(sinp);
// yaw (z-axis rotation)
double siny_cosp = 2.0 * (v.w * v.z + v.x * v.y);
double cosy_cosp = 1.0 - 2.0 * (v.y * v.y + v.z * v.z);
euler.z = std::atan2(siny_cosp, cosy_cosp);
euler *= Rad2Deg;
cache_euler = euler;
isCacheUpToDate_matrix = true;
}
return cache_euler;
}
Matrix4x4 Quaternion::ToRotationMatrix() const
{
const std::lock_guard<std::mutex> lock(lock_matrixCache);
if (!isCacheUpToDate_matrix)
{
Matrix4x4 m;
const double sqx = v.x * v.x;
const double sqy = v.y * v.y;
const double sqz = v.z * v.z;
const double sqw = v.w * v.w;
const double x = v.x;
const double y = v.y;
const double z = v.z;
const double w = v.w;
// invs (inverse square length) is only required if quaternion is not already normalised
double invs = 1.0 / (sqx + sqy + sqz + sqw);
// since sqw + sqx + sqy + sqz =1/invs*invs
// yaw (y)
m.c = ((2 * x * z) - (2 * w * y)) * invs;
m.f = (1 - (2 * sqx) - (2 * sqz)) * invs;
m.i = ((2 * x * z) + (2 * w * y)) * invs;
// pitch (x)
m.a = (1 - (2 * sqy) - (2 * sqz)) * invs;
m.g = ((2 * y * z) + (2 * w * x)) * invs;
m.j = ((2 * y * z) - (2 * w * x)) * invs;
// roll (z)
m.b = ((2 * x * v.y) + (2 * w * z)) * invs;
m.e = ((2 * x * v.y) - (2 * w * z)) * invs;
m.k = (1 - (2 * sqx) - (2 * sqy)) * invs;
m.p = 1;
cache_matrix = m;
isCacheUpToDate_matrix = true;
}
return cache_matrix;
}
Vector4d Quaternion::GetRawValues() const
{
return v;
}
Quaternion Quaternion::AngleBetween(const Quaternion& other) const
{
return other * Conjugate();
}
void Quaternion::SetRawValues(const Vector4d values)
{
InvalidateCache();
v = values;
return;
}
Quaternion Quaternion::Lerp(const Quaternion& other, double t) const
{
return Quaternion(v.Lerp(other.v, t)).UnitQuaternion();
}
void Quaternion::InvalidateCache()
{
isCacheUpToDate_euler = false;
isCacheUpToDate_matrix = false;
isCacheUpToDate_inverse = false;
return;
}
namespace Eule
{
std::ostream& operator<< (std::ostream& os, const Quaternion& q)
{
os << "[" << q.v << "]";
return os;
}
std::wostream& operator<< (std::wostream& os, const Quaternion& q)
{
os << L"[" << q.v << L"]";
return os;
}
}
/*** ../Eule/Random.cpp ***/
#include <array>
using namespace Eule;
// Checks if the random number generator is initialized. Does nothing if it is, initializes if it isn't.
#define MAKE_SURE_RNG_IS_INITIALIZED if (!isRngInitialized) InitRng();
void Random::InitRng()
{
// Create truly random source (from hardware events)
std::random_device randomSource;
// Generate enough truly random values to populate the entire state of the mersenne twister
std::array<int, std::mt19937::state_size> seedValues;
std::generate_n(seedValues.data(), seedValues.size(), std::ref(randomSource));
std::seed_seq seedSequence(seedValues.begin(), seedValues.end());
// Seed the mersenne twister with these values
rng = std::mt19937(seedSequence);
isRngInitialized = true;
return;
}
// Will return a random double between 0 and 1
double Random::RandomFloat()
{
MAKE_SURE_RNG_IS_INITIALIZED;
return (rng() % 694206942069ll) / 694206942069.0;
}
// Will return a random unsigned integer.
unsigned int Random::RandomUint()
{
MAKE_SURE_RNG_IS_INITIALIZED;
return rng();
}
// Will return a random integer
unsigned int Random::RandomInt()
{
MAKE_SURE_RNG_IS_INITIALIZED;
// Since this is supposed to return a random value anyways,
// we can let the random uint overflow without any problems.
return (int)rng();
}
// Will return a random double within a range
// These bounds are INCLUSIVE!
double Random::RandomRange(double min, double max)
{
return (RandomFloat() * (max - min)) + min;
}
// Will return a random integer within a range. This is faster than '(int)RandomRange(x,y)'
// These bounds are INCLUSIVE!
int Random::RandomIntRange(int min, int max)
{
MAKE_SURE_RNG_IS_INITIALIZED;
return (rng() % (max + 1 - min)) + min;
}
bool Random::RandomChance(const double chance)
{
return RandomFloat() <= chance;
}
std::mt19937 Random::rng;
bool Random::isRngInitialized = true;
/*** ../Eule/TrapazoidalPrismCollider.cpp ***/
using namespace Eule;
TrapazoidalPrismCollider::TrapazoidalPrismCollider()
{
return;
}
void TrapazoidalPrismCollider::operator=(const TrapazoidalPrismCollider& other)
{
vertices = other.vertices;
faceNormals = other.faceNormals;
return;
}
void TrapazoidalPrismCollider::operator=(TrapazoidalPrismCollider&& other) noexcept
{
vertices = std::move(other.vertices);
faceNormals = std::move(other.faceNormals);
return;
}
const Vector3d& TrapazoidalPrismCollider::GetVertex(std::size_t index) const
{
return vertices[index];
}
void TrapazoidalPrismCollider::SetVertex(std::size_t index, const Vector3d value)
{
vertices[index] = value;
GenerateNormalsFromVertices();
return;
}
void TrapazoidalPrismCollider::GenerateNormalsFromVertices()
{
faceNormals[(std::size_t)FACE_NORMALS::LEFT] =
(vertices[BACK|LEFT|BOTTOM] - vertices[FRONT|LEFT|BOTTOM])
.CrossProduct(vertices[FRONT|LEFT|TOP] - vertices[FRONT|LEFT|BOTTOM]);
faceNormals[(std::size_t)FACE_NORMALS::RIGHT] =
(vertices[FRONT|RIGHT|TOP] - vertices[FRONT|RIGHT|BOTTOM])
.CrossProduct(vertices[BACK|RIGHT|BOTTOM] - vertices[FRONT|RIGHT|BOTTOM]);
faceNormals[(std::size_t)FACE_NORMALS::FRONT] =
(vertices[FRONT|LEFT|TOP] - vertices[FRONT|LEFT|BOTTOM])
.CrossProduct(vertices[FRONT|RIGHT|BOTTOM] - vertices[FRONT|LEFT|BOTTOM]);
faceNormals[(std::size_t)FACE_NORMALS::BACK] =
(vertices[BACK|RIGHT|BOTTOM] - vertices[BACK|LEFT|BOTTOM])
.CrossProduct(vertices[BACK|LEFT|TOP] - vertices[BACK|LEFT|BOTTOM]);
faceNormals[(std::size_t)FACE_NORMALS::TOP] =
(vertices[BACK|LEFT|TOP] - vertices[FRONT|LEFT|TOP])
.CrossProduct(vertices[FRONT|RIGHT|TOP] - vertices[FRONT|LEFT|TOP]);
faceNormals[(std::size_t)FACE_NORMALS::BOTTOM] =
(vertices[FRONT|RIGHT|BOTTOM] - vertices[FRONT|LEFT|BOTTOM])
.CrossProduct(vertices[BACK|LEFT|BOTTOM] - vertices[FRONT|LEFT|BOTTOM]);
return;
}
double TrapazoidalPrismCollider::FaceDot(FACE_NORMALS face, const Vector3d& point) const
{
// This vertex is the one being used twice to calculate the normals
std::size_t coreVertexIdx;
switch (face)
{
case FACE_NORMALS::LEFT:
coreVertexIdx = FRONT|LEFT|BOTTOM;
break;
case FACE_NORMALS::RIGHT:
coreVertexIdx = FRONT|RIGHT|BOTTOM;
break;
case FACE_NORMALS::FRONT:
coreVertexIdx = FRONT|LEFT|BOTTOM;
break;
case FACE_NORMALS::BACK:
coreVertexIdx = BACK|LEFT|BOTTOM;
break;
case FACE_NORMALS::TOP:
coreVertexIdx = FRONT|LEFT|TOP;
break;
case FACE_NORMALS::BOTTOM:
coreVertexIdx = FRONT|LEFT|BOTTOM;
break;
}
if ((std::size_t)face < 6)
return faceNormals[(std::size_t)face].DotProduct(point - vertices[coreVertexIdx]);
return 1;
}
bool TrapazoidalPrismCollider::Contains(const Vector3d& point) const
{
for (std::size_t i = 0; i < 6; i++)
if (FaceDot((FACE_NORMALS)i, point) < 0)
return false;
return true;
}
/*** ../Eule/Vector2.cpp ***/
#include <iostream>
//#define _EULE_NO_INTRINSICS_
#ifndef _EULE_NO_INTRINSICS_
#include <immintrin.h>
#endif
using namespace Eule;
/*
NOTE:
Here you will find bad, unoptimized methods for T=int.
This is because the compiler needs a method for each type in each instantiation of the template!
I can't generalize the methods when heavily optimizing for doubles.
These functions will get called VERY rarely, if ever at all, for T=int, so it's ok.
The T=int instantiation only exists to store a value-pair of two ints. Not so-much as a vector in terms of vector calculus.
*/
// Good, optimized chad version for doubles
template<>
double Vector2<double>::DotProduct(const Vector2<double>& other) const
{
#ifndef _EULE_NO_INTRINSICS_
// Move vector components into registers
__m256 __vector_self = _mm256_set_ps(0,0,0,0,0,0, (float)y, (float)x);
__m256 __vector_other = _mm256_set_ps(0,0,0,0,0,0, (float)other.y, (float)other.x);
// Define bitmask, and execute computation
const int mask = 0x31; // -> 0011 1000 -> use positions 0011 (last 2) of the vectors supplied, and place them in 1000 (first only) element of __dot
__m256 __dot = _mm256_dp_ps(__vector_self, __vector_other, mask);
// Retrieve result, and return it
float result[8];
_mm256_storeu_ps(result, __dot);
return result[0];
#else
return (x * other.x) +
(y * other.y);
#endif
}
// Slow, lame version for intcels
template<>
double Vector2<int>::DotProduct(const Vector2<int>& other) const
{
int iDot = (x * other.x) +
(y * other.y);
return (double)iDot;
}
// Good, optimized chad version for doubles
template<>
double Vector2<double>::CrossProduct(const Vector2<double>& other) const
{
return (x * other.y) -
(y * other.x);
}
// Slow, lame version for intcels
template<>
double Vector2<int>::CrossProduct(const Vector2<int>& other) const
{
int iCross = (x * other.y) -
(y * other.x);
return (double)iCross;
}
// Good, optimized chad version for doubles
template<>
double Vector2<double>::SqrMagnitude() const
{
// x.DotProduct(x) == x.SqrMagnitude()
return DotProduct(*this);
}
// Slow, lame version for intcels
template<>
double Vector2<int>::SqrMagnitude() const
{
int iSqrMag = x*x + y*y;
return (double)iSqrMag;
}
template<typename T>
double Vector2<T>::Magnitude() const
{
return sqrt(SqrMagnitude());
}
template<>
Vector2<double> Vector2<double>::VectorScale(const Vector2<double>& scalar) const
{
#ifndef _EULE_NO_INTRINSICS_
// Load vectors into registers
__m256d __vector_self = _mm256_set_pd(0, 0, y, x);
__m256d __vector_scalar = _mm256_set_pd(0, 0, scalar.y, scalar.x);
// Multiply them
__m256d __product = _mm256_mul_pd(__vector_self, __vector_scalar);
// Retrieve result
double result[4];
_mm256_storeu_pd(result, __product);
// Return value
return Vector2<double>(
result[0],
result[1]
);
#else
return Vector2<double>(
x * scalar.x,
y * scalar.y
);
#endif
}
template<>
Vector2<int> Vector2<int>::VectorScale(const Vector2<int>& scalar) const
{
return Vector2<int>(
x * scalar.x,
y * scalar.y
);
}
template<typename T>
Vector2<double> Vector2<T>::Normalize() const
{
Vector2<double> norm(x, y);
norm.NormalizeSelf();
return norm;
}
// Method to normalize a Vector2d
template<>
void Vector2<double>::NormalizeSelf()
{
double length = Magnitude();
// Prevent division by 0
if (length == 0)
{
x = 0;
y = 0;
}
else
{
#ifndef _EULE_NO_INTRINSICS_
// Load vector and length into registers
__m256d __vec = _mm256_set_pd(0, 0, y, x);
__m256d __len = _mm256_set1_pd(length);
// Divide
__m256d __prod = _mm256_div_pd(__vec, __len);
// Extract and set values
double prod[4];
_mm256_storeu_pd(prod, __prod);
x = prod[0];
y = prod[1];
#else
x /= length;
y /= length;
#endif
}
return;
}
// You can't normalize an int vector, ffs!
// But we need an implementation for T=int
template<>
void Vector2<int>::NormalizeSelf()
{
std::cerr << "Stop normalizing int-vectors!!" << std::endl;
x = 0;
y = 0;
return;
}
// Good, optimized chad version for doubles
template<>
void Vector2<double>::LerpSelf(const Vector2<double>& other, double t)
{
const double it = 1.0 - t; // Inverse t
#ifndef _EULE_NO_INTRINSICS_
// Move vector components and factors into registers
__m256d __vector_self = _mm256_set_pd(0, 0, y, x);
__m256d __vector_other = _mm256_set_pd(0, 0, other.y, other.x);
__m256d __t = _mm256_set1_pd(t);
__m256d __it = _mm256_set1_pd(it); // Inverse t
// Procedure:
// (__vector_self * __it) + (__vector_other * __t)
__m256d __sum = _mm256_set1_pd(0); // this will hold the sum of the two multiplications
__sum = _mm256_fmadd_pd(__vector_self, __it, __sum);
__sum = _mm256_fmadd_pd(__vector_other, __t, __sum);
// Retrieve result, and apply it
double sum[4];
_mm256_storeu_pd(sum, __sum);
x = sum[0];
y = sum[1];
#else
x = it * x + t * other.x;
y = it * y + t * other.y;
#endif
return;
}
// Slow, lame version for intcels
template<>
void Vector2<int>::LerpSelf(const Vector2<int>& other, double t)
{
const double it = 1.0 - t; // Inverse t
x = (int)(it * (double)x + t * (double)other.x);
y = (int)(it * (double)y + t * (double)other.y);
return;
}
template<>
Vector2<double> Vector2<double>::Lerp(const Vector2<double>& other, double t) const
{
Vector2d copy(*this);
copy.LerpSelf(other, t);
return copy;
}
template<>
Vector2<double> Vector2<int>::Lerp(const Vector2<int>& other, double t) const
{
Vector2d copy(this->ToDouble());
copy.LerpSelf(other.ToDouble(), t);
return copy;
}
template<typename T>
T& Vector2<T>::operator[](std::size_t idx)
{
switch (idx)
{
case 0:
return x;
case 1:
return y;
default:
throw std::out_of_range("Array descriptor on Vector2<T> out of range!");
}
}
template<typename T>
const T& Vector2<T>::operator[](std::size_t idx) const
{
switch (idx)
{
case 0:
return x;
case 1:
return y;
default:
throw std::out_of_range("Array descriptor on Vector2<T> out of range!");
}
}
template<typename T>
bool Vector2<T>::Similar(const Vector2<T>& other, double epsilon) const
{
return
(::Math::Similar(x, other.x, epsilon)) &&
(::Math::Similar(y, other.y, epsilon))
;
}
template<typename T>
Vector2<int> Vector2<T>::ToInt() const
{
return Vector2<int>((int)x, (int)y);
}
template<typename T>
Vector2<double> Vector2<T>::ToDouble() const
{
return Vector2<double>((double)x, (double)y);
}
template<>
Vector2<double> Vector2<double>::operator+(const Vector2<double>& other) const
{
#ifndef _EULE_NO_INTRINSICS_
// Move vector components and factors into registers
__m256d __vector_self = _mm256_set_pd(0, 0, y, x);
__m256d __vector_other = _mm256_set_pd(0, 0, other.y, other.x);
// Add the components
__m256d __sum = _mm256_add_pd(__vector_self, __vector_other);
// Retrieve and return these values
double sum[4];
_mm256_storeu_pd(sum, __sum);
return Vector2<double>(
sum[0],
sum[1]
);
#else
return Vector2<double>(
x + other.x,
y + other.y
);
#endif
}
template<typename T>
Vector2<T> Vector2<T>::operator+(const Vector2<T>& other) const
{
return Vector2<T>(
x + other.x,
y + other.y
);
}
template<>
void Vector2<double>::operator+=(const Vector2<double>& other)
{
#ifndef _EULE_NO_INTRINSICS_
// Move vector components and factors into registers
__m256d __vector_self = _mm256_set_pd(0, 0, y, x);
__m256d __vector_other = _mm256_set_pd(0, 0, other.y, other.x);
// Add the components
__m256d __sum = _mm256_add_pd(__vector_self, __vector_other);
// Retrieve and apply these values
double sum[4];
_mm256_storeu_pd(sum, __sum);
x = sum[0];
y = sum[1];
#else
x += other.x;
y += other.y;
#endif
return;
}
template<typename T>
void Vector2<T>::operator+=(const Vector2<T>& other)
{
x += other.x;
y += other.y;
return;
}
template<>
Vector2<double> Vector2<double>::operator-(const Vector2<double>& other) const
{
#ifndef _EULE_NO_INTRINSICS_
// Move vector components and factors into registers
__m256d __vector_self = _mm256_set_pd(0, 0, y, x);
__m256d __vector_other = _mm256_set_pd(0, 0, other.y, other.x);
// Subtract the components
__m256d __diff = _mm256_sub_pd(__vector_self, __vector_other);
// Retrieve and return these values
double diff[4];
_mm256_storeu_pd(diff, __diff);
return Vector2<double>(
diff[0],
diff[1]
);
#else
return Vector2<double>(
x - other.x,
y - other.y
);
#endif
}
template<typename T>
Vector2<T> Vector2<T>::operator-(const Vector2<T>& other) const
{
return Vector2<T>(
x - other.x,
y - other.y
);
}
template<>
void Vector2<double>::operator-=(const Vector2<double>& other)
{
#ifndef _EULE_NO_INTRINSICS_
// Move vector components and factors into registers
__m256d __vector_self = _mm256_set_pd(0, 0, y, x);
__m256d __vector_other = _mm256_set_pd(0, 0, other.y, other.x);
// Subtract the components
__m256d __diff = _mm256_sub_pd(__vector_self, __vector_other);
// Retrieve and apply these values
double diff[4];
_mm256_storeu_pd(diff, __diff);
x = diff[0];
y = diff[1];
#else
x -= other.x;
y -= other.y;
#endif
return;
}
template<typename T>
void Vector2<T>::operator-=(const Vector2<T>& other)
{
x -= other.x;
y -= other.y;
return;
}
template<>
Vector2<double> Vector2<double>::operator*(const double scale) const
{
#ifndef _EULE_NO_INTRINSICS_
// Move vector components and factors into registers
__m256d __vector_self = _mm256_set_pd(0, 0, y, x);
__m256d __scalar = _mm256_set1_pd(scale);
// Multiply the components
__m256d __prod = _mm256_mul_pd(__vector_self, __scalar);
// Retrieve and return these values
double prod[4];
_mm256_storeu_pd(prod, __prod);
return Vector2<double>(
prod[0],
prod[1]
);
#else
return Vector2<double>(
x * scale,
y * scale
);
#endif
}
template<typename T>
Vector2<T> Vector2<T>::operator*(const T scale) const
{
return Vector2<T>(
x * scale,
y * scale
);
}
template<>
void Vector2<double>::operator*=(const double scale)
{
#ifndef _EULE_NO_INTRINSICS_
// Move vector components and factors into registers
__m256d __vector_self = _mm256_set_pd(0, 0, y, x);
__m256d __scalar = _mm256_set1_pd(scale);
// Multiply the components
__m256d __prod = _mm256_mul_pd(__vector_self, __scalar);
// Retrieve and apply these values
double prod[4];
_mm256_storeu_pd(prod, __prod);
x = prod[0];
y = prod[1];
#else
x *= scale;
y *= scale;
#endif
return;
}
template<typename T>
void Vector2<T>::operator*=(const T scale)
{
x *= scale;
y *= scale;
return;
}
template<>
Vector2<double> Vector2<double>::operator/(const double scale) const
{
#ifndef _EULE_NO_INTRINSICS_
// Move vector components and factors into registers
__m256d __vector_self = _mm256_set_pd(0, 0, y, x);
__m256d __scalar = _mm256_set1_pd(scale);
// Divide the components
__m256d __prod = _mm256_div_pd(__vector_self, __scalar);
// Retrieve and return these values
double prod[4];
_mm256_storeu_pd(prod, __prod);
return Vector2<double>(
prod[0],
prod[1]
);
#else
return Vector2<double>(
x / scale,
y / scale
);
#endif
}
template<typename T>
Vector2<T> Vector2<T>::operator/(const T scale) const
{
return Vector2<T>(
x / scale,
y / scale
);
}
template<>
void Vector2<double>::operator/=(const double scale)
{
#ifndef _EULE_NO_INTRINSICS_
// Move vector components and factors into registers
__m256d __vector_self = _mm256_set_pd(0, 0, y, x);
__m256d __scalar = _mm256_set1_pd(scale);
// Divide the components
__m256d __prod = _mm256_div_pd(__vector_self, __scalar);
// Retrieve and apply these values
double prod[4];
_mm256_storeu_pd(prod, __prod);
x = prod[0];
y = prod[1];
#else
x /= scale;
y /= scale;
#endif
return;
}
template<typename T>
void Vector2<T>::operator/=(const T scale)
{
x /= scale;
y /= scale;
return;
}
template<typename T>
void Vector2<T>::operator=(const Vector2<T>& other)
{
x = other.x;
y = other.y;
return;
}
template<typename T>
void Vector2<T>::operator=(Vector2<T>&& other) noexcept
{
x = std::move(other.x);
y = std::move(other.y);
return;
}
template<typename T>
bool Vector2<T>::operator==(const Vector2<T>& other) const
{
return
(x == other.x) &&
(y == other.y);
}
template<typename T>
bool Vector2<T>::operator!=(const Vector2<T>& other) const
{
return !operator==(other);
}
template<typename T>
Vector2<T> Vector2<T>::operator-() const
{
return Vector2<T>(
-x,
-y
);
}
// Don't want these includes above the other stuff
template<typename T>
Vector2<T>::operator Vector3<T>() const
{
return Vector3<T>(x, y, 0);
}
template<typename T>
Vector2<T>::operator Vector4<T>() const
{
return Vector4<T>(x, y, 0, 0);
}
template class Vector2<int>;
template class Vector2<double>;
// Some handy predefines
template <typename T>
const Vector2<double> Vector2<T>::up(0, 1);
template <typename T>
const Vector2<double> Vector2<T>::down(0, -1);
template <typename T>
const Vector2<double> Vector2<T>::right(1, 0);
template <typename T>
const Vector2<double> Vector2<T>::left(-1, 0);
template <typename T>
const Vector2<double> Vector2<T>::one(1, 1);
template <typename T>
const Vector2<double> Vector2<T>::zero(0, 0);
/*** ../Eule/Vector3.cpp ***/
#include <iostream>
//#define _EULE_NO_INTRINSICS_
#ifndef _EULE_NO_INTRINSICS_
#include <immintrin.h>
#endif
using namespace Eule;
/*
NOTE:
Here you will find bad, unoptimized methods for T=int.
This is because the compiler needs a method for each type in each instantiation of the template!
I can't generalize the methods when heavily optimizing for doubles.
These functions will get called VERY rarely, if ever at all, for T=int, so it's ok.
The T=int instantiation only exists to store a value-pair of two ints. Not so-much as a vector in terms of vector calculus.
*/
// Good, optimized chad version for doubles
template<>
double Vector3<double>::DotProduct(const Vector3<double>& other) const
{
#ifndef _EULE_NO_INTRINSICS_
// Move vector components into registers
__m256 __vector_self = _mm256_set_ps(0,0,0,0,0, (float)z, (float)y, (float)x);
__m256 __vector_other = _mm256_set_ps(0,0,0,0,0, (float)other.z, (float)other.y, (float)other.x);
// Define bitmask, and execute computation
const int mask = 0x71; // -> 0111 1000 -> use positions 0111 (last 3) of the vectors supplied, and place them in 1000 (first only) element of __dot
__m256 __dot = _mm256_dp_ps(__vector_self, __vector_other, mask);
// Retrieve result, and return it
float result[8];
_mm256_storeu_ps(result, __dot);
return result[0];
#else
return (x * other.x) +
(y * other.y) +
(z * other.z);
#endif
}
// Slow, lame version for intcels
template<>
double Vector3<int>::DotProduct(const Vector3<int>& other) const
{
int iDot = (x * other.x) + (y * other.y) + (z * other.z);
return (double)iDot;
}
// Good, optimized chad version for doubles
template<>
Vector3<double> Vector3<double>::CrossProduct(const Vector3<double>& other) const
{
Vector3<double> cp;
cp.x = (y * other.z) - (z * other.y);
cp.y = (z * other.x) - (x * other.z);
cp.z = (x * other.y) - (y * other.x);
return cp;
}
// Slow, lame version for intcels
template<>
Vector3<double> Vector3<int>::CrossProduct(const Vector3<int>& other) const
{
Vector3<double> cp;
cp.x = ((double)y * (double)other.z) - ((double)z * (double)other.y);
cp.y = ((double)z * (double)other.x) - ((double)x * (double)other.z);
cp.z = ((double)x * (double)other.y) - ((double)y * (double)other.x);
return cp;
}
// Good, optimized chad version for doubles
template<>
double Vector3<double>::SqrMagnitude() const
{
// x.DotProduct(x) == x.SqrMagnitude()
return DotProduct(*this);
}
// Slow, lame version for intcels
template<>
double Vector3<int>::SqrMagnitude() const
{
int iSqrMag = x*x + y*y + z*z;
return (double)iSqrMag;
}
template <typename T>
double Vector3<T>::Magnitude() const
{
return sqrt(SqrMagnitude());
}
template<>
Vector3<double> Vector3<double>::VectorScale(const Vector3<double>& scalar) const
{
#ifndef _EULE_NO_INTRINSICS_
// Load vectors into registers
__m256d __vector_self = _mm256_set_pd(0, z, y, x);
__m256d __vector_scalar = _mm256_set_pd(0, scalar.z, scalar.y, scalar.x);
// Multiply them
__m256d __product = _mm256_mul_pd(__vector_self, __vector_scalar);
// Retrieve result
double result[4];
_mm256_storeu_pd(result, __product);
// Return value
return Vector3<double>(
result[0],
result[1],
result[2]
);
#else
return Vector3<double>(
x * scalar.x,
y * scalar.y,
z * scalar.z
);
#endif
}
template<>
Vector3<int> Vector3<int>::VectorScale(const Vector3<int>& scalar) const
{
return Vector3<int>(
x * scalar.x,
y * scalar.y,
z * scalar.z
);
}
template<typename T>
Vector3<double> Vector3<T>::Normalize() const
{
Vector3<double> norm(x, y, z);
norm.NormalizeSelf();
return norm;
}
// Method to normalize a Vector3d
template<>
void Vector3<double>::NormalizeSelf()
{
const double length = Magnitude();
// Prevent division by 0
if (length == 0)
{
x = 0;
y = 0;
z = 0;
}
else
{
#ifndef _EULE_NO_INTRINSICS_
// Load vector and length into registers
__m256d __vec = _mm256_set_pd(0, z, y, x);
__m256d __len = _mm256_set1_pd(length);
// Divide
__m256d __prod = _mm256_div_pd(__vec, __len);
// Extract and set values
double prod[4];
_mm256_storeu_pd(prod, __prod);
x = prod[0];
y = prod[1];
z = prod[2];
#else
x /= length;
y /= length;
z /= length;
#endif
}
return;
}
// You can't normalize an int vector, ffs!
// But we need an implementation for T=int
template<>
void Vector3<int>::NormalizeSelf()
{
std::cerr << "Stop normalizing int-vectors!!" << std::endl;
x = 0;
y = 0;
z = 0;
return;
}
template<typename T>
bool Vector3<T>::Similar(const Vector3<T>& other, double epsilon) const
{
return
(::Math::Similar(x, other.x, epsilon)) &&
(::Math::Similar(y, other.y, epsilon)) &&
(::Math::Similar(z, other.z, epsilon))
;
}
template<typename T>
Vector3<int> Vector3<T>::ToInt() const
{
return Vector3<int>((int)x, (int)y, (int)z);
}
template<typename T>
Vector3<double> Vector3<T>::ToDouble() const
{
return Vector3<double>((double)x, (double)y, (double)z);
}
template<typename T>
T& Vector3<T>::operator[](std::size_t idx)
{
switch (idx)
{
case 0:
return x;
case 1:
return y;
case 2:
return z;
default:
throw std::out_of_range("Array descriptor on Vector3<T> out of range!");
}
}
template<typename T>
const T& Vector3<T>::operator[](std::size_t idx) const
{
switch (idx)
{
case 0:
return x;
case 1:
return y;
case 2:
return z;
default:
throw std::out_of_range("Array descriptor on Vector3<T> out of range!");
}
}
// Good, optimized chad version for doubles
template<>
void Vector3<double>::LerpSelf(const Vector3<double>& other, double t)
{
const double it = 1.0 - t; // Inverse t
#ifndef _EULE_NO_INTRINSICS_
// Move vector components and factors into registers
__m256d __vector_self = _mm256_set_pd(0, z, y, x);
__m256d __vector_other = _mm256_set_pd(0, other.z, other.y, other.x);
__m256d __t = _mm256_set1_pd(t);
__m256d __it = _mm256_set1_pd(it); // Inverse t
// Procedure:
// (__vector_self * __it) + (__vector_other * __t)
__m256d __sum = _mm256_set1_pd(0); // this will hold the sum of the two multiplications
__sum = _mm256_fmadd_pd(__vector_self, __it, __sum);
__sum = _mm256_fmadd_pd(__vector_other, __t, __sum);
// Retrieve result, and apply it
double sum[4];
_mm256_storeu_pd(sum, __sum);
x = sum[0];
y = sum[1];
z = sum[2];
#else
x = it*x + t*other.x;
y = it*y + t*other.y;
z = it*z + t*other.z;
#endif
return;
}
// Slow, lame version for intcels
template<>
void Vector3<int>::LerpSelf(const Vector3<int>& other, double t)
{
const double it = 1.0 - t; // Inverse t
x = (int)(it * (double)x + t * (double)other.x);
y = (int)(it * (double)y + t * (double)other.y);
z = (int)(it * (double)z + t * (double)other.z);
return;
}
template<>
Vector3<double> Vector3<double>::Lerp(const Vector3<double>& other, double t) const
{
Vector3d copy(*this);
copy.LerpSelf(other, t);
return copy;
}
template<>
Vector3<double> Vector3<int>::Lerp(const Vector3<int>& other, double t) const
{
Vector3d copy(this->ToDouble());
copy.LerpSelf(other.ToDouble(), t);
return copy;
}
template<>
Vector3<double> Vector3<double>::operator+(const Vector3<double>& other) const
{
#ifndef _EULE_NO_INTRINSICS_
// Move vector components and factors into registers
__m256d __vector_self = _mm256_set_pd(0, z, y, x);
__m256d __vector_other = _mm256_set_pd(0, other.z, other.y, other.x);
// Add the components
__m256d __sum = _mm256_add_pd(__vector_self, __vector_other);
// Retrieve and return these values
double sum[4];
_mm256_storeu_pd(sum, __sum);
return Vector3<double>(
sum[0],
sum[1],
sum[2]
);
#else
return Vector3<double>(
x + other.x,
y + other.y,
z + other.z
);
#endif
}
template<typename T>
Vector3<T> Vector3<T>::operator+(const Vector3<T>& other) const
{
return Vector3<T>(
x + other.x,
y + other.y,
z + other.z
);
}
template<>
void Vector3<double>::operator+=(const Vector3<double>& other)
{
#ifndef _EULE_NO_INTRINSICS_
// Move vector components and factors into registers
__m256d __vector_self = _mm256_set_pd(0, z, y, x);
__m256d __vector_other = _mm256_set_pd(0, other.z, other.y, other.x);
// Add the components
__m256d __sum = _mm256_add_pd(__vector_self, __vector_other);
// Retrieve and apply these values
double sum[4];
_mm256_storeu_pd(sum, __sum);
x = sum[0];
y = sum[1];
z = sum[2];
#else
x += other.x;
y += other.y;
z += other.z;
#endif
return;
}
template<typename T>
void Vector3<T>::operator+=(const Vector3<T>& other)
{
x += other.x;
y += other.y;
z += other.z;
return;
}
template<>
Vector3<double> Vector3<double>::operator-(const Vector3<double>& other) const
{
#ifndef _EULE_NO_INTRINSICS_
// Move vector components and factors into registers
__m256d __vector_self = _mm256_set_pd(0, z, y, x);
__m256d __vector_other = _mm256_set_pd(0, other.z, other.y, other.x);
// Subtract the components
__m256d __diff = _mm256_sub_pd(__vector_self, __vector_other);
// Retrieve and return these values
double diff[4];
_mm256_storeu_pd(diff, __diff);
return Vector3<double>(
diff[0],
diff[1],
diff[2]
);
#else
return Vector3<double>(
x - other.x,
y - other.y,
z - other.z
);
#endif
}
template<typename T>
Vector3<T> Vector3<T>::operator-(const Vector3<T>& other) const
{
return Vector3<T>(
x - other.x,
y - other.y,
z - other.z
);
}
template<>
void Vector3<double>::operator-=(const Vector3<double>& other)
{
#ifndef _EULE_NO_INTRINSICS_
// Move vector components and factors into registers
__m256d __vector_self = _mm256_set_pd(0, z, y, x);
__m256d __vector_other = _mm256_set_pd(0, other.z, other.y, other.x);
// Subtract the components
__m256d __diff = _mm256_sub_pd(__vector_self, __vector_other);
// Retrieve and apply these values
double diff[4];
_mm256_storeu_pd(diff, __diff);
x = diff[0];
y = diff[1];
z = diff[2];
#else
x -= other.x;
y -= other.y;
z -= other.z;
#endif
return;
}
template<typename T>
void Vector3<T>::operator-=(const Vector3<T>& other)
{
x -= other.x;
y -= other.y;
z -= other.z;
return;
}
template<>
Vector3<double> Vector3<double>::operator*(const double scale) const
{
#ifndef _EULE_NO_INTRINSICS_
// Move vector components and factors into registers
__m256d __vector_self = _mm256_set_pd(0, z, y, x);
__m256d __scalar = _mm256_set1_pd(scale);
// Multiply the components
__m256d __prod = _mm256_mul_pd(__vector_self, __scalar);
// Retrieve and return these values
double prod[4];
_mm256_storeu_pd(prod, __prod);
return Vector3<double>(
prod[0],
prod[1],
prod[2]
);
#else
return Vector3<double>(
x * scale,
y * scale,
z * scale
);
#endif
}
template<typename T>
Vector3<T> Vector3<T>::operator*(const T scale) const
{
return Vector3<T>(
x * scale,
y * scale,
z * scale
);
}
template<>
void Vector3<double>::operator*=(const double scale)
{
#ifndef _EULE_NO_INTRINSICS_
// Move vector components and factors into registers
__m256d __vector_self = _mm256_set_pd(0, z, y, x);
__m256d __scalar = _mm256_set1_pd(scale);
// Multiply the components
__m256d __prod = _mm256_mul_pd(__vector_self, __scalar);
// Retrieve and apply these values
double prod[4];
_mm256_storeu_pd(prod, __prod);
x = prod[0];
y = prod[1];
z = prod[2];
#else
x *= scale;
y *= scale;
z *= scale;
#endif
return;
}
template<typename T>
void Vector3<T>::operator*=(const T scale)
{
x *= scale;
y *= scale;
z *= scale;
return;
}
template<>
Vector3<double> Vector3<double>::operator/(const double scale) const
{
#ifndef _EULE_NO_INTRINSICS_
// Move vector components and factors into registers
__m256d __vector_self = _mm256_set_pd(0, z, y, x);
__m256d __scalar = _mm256_set1_pd(scale);
// Divide the components
__m256d __prod = _mm256_div_pd(__vector_self, __scalar);
// Retrieve and return these values
double prod[4];
_mm256_storeu_pd(prod, __prod);
return Vector3<double>(
prod[0],
prod[1],
prod[2]
);
#else
return Vector3<double>(
x / scale,
y / scale,
z / scale
);
#endif
}
template<typename T>
Vector3<T> Vector3<T>::operator/(const T scale) const
{
return Vector3<T>(
x / scale,
y / scale,
z / scale
);
}
template<>
void Vector3<double>::operator/=(const double scale)
{
#ifndef _EULE_NO_INTRINSICS_
// Move vector components and factors into registers
__m256d __vector_self = _mm256_set_pd(0, z, y, x);
__m256d __scalar = _mm256_set1_pd(scale);
// Divide the components
__m256d __prod = _mm256_div_pd(__vector_self, __scalar);
// Retrieve and apply these values
double prod[4];
_mm256_storeu_pd(prod, __prod);
x = prod[0];
y = prod[1];
z = prod[2];
#else
x /= scale;
y /= scale;
z /= scale;
#endif
return;
}
template<typename T>
void Vector3<T>::operator/=(const T scale)
{
x /= scale;
y /= scale;
z /= scale;
return;
}
// Good, optimized chad version for doubles
template<>
Vector3<double> Vector3<double>::operator*(const Matrix4x4& mat) const
{
Vector3<double> newVec;
#ifndef _EULE_NO_INTRINSICS_
// Store x, y, and z values
__m256d __vecx = _mm256_set1_pd(x);
__m256d __vecy = _mm256_set1_pd(y);
__m256d __vecz = _mm256_set1_pd(z);
// Store matrix values
__m256d __mat_row0 = _mm256_set_pd(mat[0][0], mat[1][0], mat[2][0], 0);
__m256d __mat_row1 = _mm256_set_pd(mat[0][1], mat[1][1], mat[2][1], 0);
__m256d __mat_row2 = _mm256_set_pd(mat[0][2], mat[1][2], mat[2][2], 0);
// Multiply x, y, z and matrix values
__m256d __mul_vecx_row0 = _mm256_mul_pd(__vecx, __mat_row0);
__m256d __mul_vecy_row1 = _mm256_mul_pd(__vecy, __mat_row1);
__m256d __mul_vecz_row2 = _mm256_mul_pd(__vecz, __mat_row2);
// Sum up the products
__m256d __sum = _mm256_add_pd(__mul_vecx_row0, _mm256_add_pd(__mul_vecy_row1, __mul_vecz_row2));
// Store translation values
__m256d __translation = _mm256_set_pd(mat[0][3], mat[1][3], mat[2][3], 0);
// Add the translation values
__m256d __final = _mm256_add_pd(__sum, __translation);
double dfinal[4];
_mm256_storeu_pd(dfinal, __final);
newVec.x = dfinal[3];
newVec.y = dfinal[2];
newVec.z = dfinal[1];
#else
// Rotation, Scaling
newVec.x = (mat[0][0] * x) + (mat[0][1] * y) + (mat[0][2] * z);
newVec.y = (mat[1][0] * x) + (mat[1][1] * y) + (mat[1][2] * z);
newVec.z = (mat[2][0] * x) + (mat[2][1] * y) + (mat[2][2] * z);
// Translation
newVec.x += mat[0][3];
newVec.y += mat[1][3];
newVec.z += mat[2][3];
#endif
return newVec;
}
// Slow, lame version for intcels
template<>
Vector3<int> Vector3<int>::operator*(const Matrix4x4& mat) const
{
Vector3<double> newVec;
// Rotation, Scaling
newVec.x = (mat[0][0] * x) + (mat[0][1] * y) + (mat[0][2] * z);
newVec.y = (mat[1][0] * x) + (mat[1][1] * y) + (mat[1][2] * z);
newVec.z = (mat[2][0] * x) + (mat[2][1] * y) + (mat[2][2] * z);
// Translation
newVec.x += mat[0][3];
newVec.y += mat[1][3];
newVec.z += mat[2][3];
return Vector3<int>(
(int)newVec.x,
(int)newVec.y,
(int)newVec.z
);
}
// Good, optimized chad version for doubles
template<>
void Vector3<double>::operator*=(const Matrix4x4& mat)
{
#ifndef _EULE_NO_INTRINSICS_
// Store x, y, and z values
__m256d __vecx = _mm256_set1_pd(x);
__m256d __vecy = _mm256_set1_pd(y);
__m256d __vecz = _mm256_set1_pd(z);
// Store matrix values
__m256d __mat_row0 = _mm256_set_pd(mat[0][0], mat[1][0], mat[2][0], 0);
__m256d __mat_row1 = _mm256_set_pd(mat[0][1], mat[1][1], mat[2][1], 0);
__m256d __mat_row2 = _mm256_set_pd(mat[0][2], mat[1][2], mat[2][2], 0);
// Multiply x, y, z and matrix values
__m256d __mul_vecx_row0 = _mm256_mul_pd(__vecx, __mat_row0);
__m256d __mul_vecy_row1 = _mm256_mul_pd(__vecy, __mat_row1);
__m256d __mul_vecz_row2 = _mm256_mul_pd(__vecz, __mat_row2);
// Sum up the products
__m256d __sum = _mm256_add_pd(__mul_vecx_row0, _mm256_add_pd(__mul_vecy_row1, __mul_vecz_row2));
// Store translation values
__m256d __translation = _mm256_set_pd(mat[0][3], mat[1][3], mat[2][3], 0);
// Add the translation values
__m256d __final = _mm256_add_pd(__sum, __translation);
double dfinal[4];
_mm256_storeu_pd(dfinal, __final);
x = dfinal[3];
y = dfinal[2];
z = dfinal[1];
#else
Vector3<double> buffer = *this;
x = (mat[0][0] * buffer.x) + (mat[0][1] * buffer.y) + (mat[0][2] * buffer.z);
y = (mat[1][0] * buffer.x) + (mat[1][1] * buffer.y) + (mat[1][2] * buffer.z);
z = (mat[2][0] * buffer.x) + (mat[2][1] * buffer.y) + (mat[2][2] * buffer.z);
// Translation
x += mat[0][3];
y += mat[1][3];
z += mat[2][3];
#endif
return;
}
template<typename T>
Vector3<T> Vector3<T>::operator-() const
{
return Vector3<T>(
-x,
-y,
-z
);
}
template<typename T>
void Vector3<T>::operator=(const Vector3<T>& other)
{
x = other.x;
y = other.y;
z = other.z;
return;
}
template<typename T>
void Vector3<T>::operator=(Vector3<T>&& other) noexcept
{
x = std::move(other.x);
y = std::move(other.y);
z = std::move(other.z);
return;
}
// Slow, lame version for intcels
template<>
void Vector3<int>::operator*=(const Matrix4x4& mat)
{
Vector3<double> buffer(x, y, z);
x = (int)((mat[0][0] * buffer.x) + (mat[0][1] * buffer.y) + (mat[0][2] * buffer.z));
y = (int)((mat[1][0] * buffer.x) + (mat[1][1] * buffer.y) + (mat[1][2] * buffer.z));
z = (int)((mat[2][0] * buffer.x) + (mat[2][1] * buffer.y) + (mat[2][2] * buffer.z));
// Translation
x += (int)mat[0][3];
y += (int)mat[1][3];
z += (int)mat[2][3];
return;
}
template<typename T>
bool Vector3<T>::operator==(const Vector3<T>& other) const
{
return
(x == other.x) &&
(y == other.y) &&
(z == other.z);
}
template<typename T>
bool Vector3<T>::operator!=(const Vector3<T>& other) const
{
return !operator==(other);
}
template<typename T>
Vector3<T>::operator Vector2<T>() const
{
return Vector2<T>(x, y);
}
template<typename T>
Vector3<T>::operator Vector4<T>() const
{
return Vector4<T>(x, y, z, 0);
}
template class Vector3<int>;
template class Vector3<double>;
// Some handy predefines
template <typename T>
const Vector3<double> Vector3<T>::up(0, 1, 0);
template <typename T>
const Vector3<double> Vector3<T>::down(0, -1, 0);
template <typename T>
const Vector3<double> Vector3<T>::right(1, 0, 0);
template <typename T>
const Vector3<double> Vector3<T>::left(-1, 0, 0);
template <typename T>
const Vector3<double> Vector3<T>::forward(0, 0, 1);
template <typename T>
const Vector3<double> Vector3<T>::backward(0, 0, -1);
template <typename T>
const Vector3<double> Vector3<T>::one(1, 1, 1);
template <typename T>
const Vector3<double> Vector3<T>::zero(0, 0, 0);
/*** ../Eule/Vector4.cpp ***/
#include <iostream>
//#define _EULE_NO_INTRINSICS_
#ifndef _EULE_NO_INTRINSICS_
#include <immintrin.h>
#endif
using namespace Eule;
/*
NOTE:
Here you will find bad, unoptimized methods for T=int.
This is because the compiler needs a method for each type in each instantiation of the template!
I can't generalize the methods when heavily optimizing for doubles.
These functions will get called VERY rarely, if ever at all, for T=int, so it's ok.
The T=int instantiation only exists to store a value-pair of two ints. Not so-much as a vector in terms of vector calculus.
*/
// Good, optimized chad version for doubles
template<>
double Vector4<double>::SqrMagnitude() const
{
return (x * x) +
(y * y) +
(z * z) +
(w * w);
}
// Slow, lame version for intcels
template<>
double Vector4<int>::SqrMagnitude() const
{
int iSqrMag = x*x + y*y + z*z + w*w;
return (double)iSqrMag;
}
template<typename T>
double Vector4<T>::Magnitude() const
{
return sqrt(SqrMagnitude());
}
template<>
Vector4<double> Vector4<double>::VectorScale(const Vector4<double>& scalar) const
{
#ifndef _EULE_NO_INTRINSICS_
// Load vectors into registers
__m256d __vector_self = _mm256_set_pd(w, z, y, x);
__m256d __vector_scalar = _mm256_set_pd(scalar.w, scalar.z, scalar.y, scalar.x);
// Multiply them
__m256d __product = _mm256_mul_pd(__vector_self, __vector_scalar);
// Retrieve result
double result[4];
_mm256_storeu_pd(result, __product);
// Return value
return Vector4<double>(
result[0],
result[1],
result[2],
result[3]
);
#else
return Vector4<double>(
x * scalar.x,
y * scalar.y,
z * scalar.z,
w * scalar.w
);
#endif
}
template<>
Vector4<int> Vector4<int>::VectorScale(const Vector4<int>& scalar) const
{
return Vector4<int>(
x * scalar.x,
y * scalar.y,
z * scalar.z,
w * scalar.w
);
}
template<typename T>
Vector4<double> Vector4<T>::Normalize() const
{
Vector4<double> norm(x, y, z, w);
norm.NormalizeSelf();
return norm;
}
// Method to normalize a Vector4d
template<>
void Vector4<double>::NormalizeSelf()
{
double length = Magnitude();
// Prevent division by 0
if (length == 0)
{
x = 0;
y = 0;
z = 0;
w = 0;
}
else
{
#ifndef _EULE_NO_INTRINSICS_
// Load vector and length into registers
__m256d __vec = _mm256_set_pd(w, z, y, x);
__m256d __len = _mm256_set1_pd(length);
// Divide
__m256d __prod = _mm256_div_pd(__vec, __len);
// Extract and set values
double prod[4];
_mm256_storeu_pd(prod, __prod);
x = prod[0];
y = prod[1];
z = prod[2];
w = prod[3];
#else
x /= length;
y /= length;
z /= length;
w /= length;
#endif
}
return;
}
// You can't normalize an int vector, ffs!
// But we need an implementation for T=int
template<>
void Vector4<int>::NormalizeSelf()
{
std::cerr << "Stop normalizing int-vectors!!" << std::endl;
x = 0;
y = 0;
z = 0;
w = 0;
return;
}
template<typename T>
bool Vector4<T>::Similar(const Vector4<T>& other, double epsilon) const
{
return
(::Math::Similar(x, other.x, epsilon)) &&
(::Math::Similar(y, other.y, epsilon)) &&
(::Math::Similar(z, other.z, epsilon)) &&
(::Math::Similar(w, other.w, epsilon))
;
}
template<typename T>
Vector4<int> Vector4<T>::ToInt() const
{
return Vector4<int>((int)x, (int)y, (int)z, (int)w);
}
template<typename T>
Vector4<double> Vector4<T>::ToDouble() const
{
return Vector4<double>((double)x, (double)y, (double)z, (double)w);
}
template<typename T>
T& Vector4<T>::operator[](std::size_t idx)
{
switch (idx)
{
case 0:
return x;
case 1:
return y;
case 2:
return z;
case 3:
return w;
default:
throw std::out_of_range("Array descriptor on Vector4<T> out of range!");
}
}
template<typename T>
const T& Vector4<T>::operator[](std::size_t idx) const
{
switch (idx)
{
case 0:
return x;
case 1:
return y;
case 2:
return z;
case 3:
return w;
default:
throw std::out_of_range("Array descriptor on Vector4<T> out of range!");
}
}
// Good, optimized chad version for doubles
template<>
void Vector4<double>::LerpSelf(const Vector4<double>& other, double t)
{
const double it = 1.0 - t; // Inverse t
#ifndef _EULE_NO_INTRINSICS_
// Move vector components and factors into registers
__m256d __vector_self = _mm256_set_pd(w, z, y, x);
__m256d __vector_other = _mm256_set_pd(other.w, other.z, other.y, other.x);
__m256d __t = _mm256_set1_pd(t);
__m256d __it = _mm256_set1_pd(it); // Inverse t
// Procedure:
// (__vector_self * __it) + (__vector_other * __t)
__m256d __sum = _mm256_set1_pd(0); // this will hold the sum of the two multiplications
__sum = _mm256_fmadd_pd(__vector_self, __it, __sum);
__sum = _mm256_fmadd_pd(__vector_other, __t, __sum);
// Retrieve result, and apply it
double sum[4];
_mm256_storeu_pd(sum, __sum);
x = sum[0];
y = sum[1];
z = sum[2];
w = sum[3];
#else
x = it * x + t * other.x;
y = it * y + t * other.y;
z = it * z + t * other.z;
w = it * w + t * other.w;
#endif
return;
}
// Slow, lame version for intcels
template<>
void Vector4<int>::LerpSelf(const Vector4<int>& other, double t)
{
const double it = 1.0 - t;
x = (int)(it * (double)x + t * (double)other.x);
y = (int)(it * (double)y + t * (double)other.y);
z = (int)(it * (double)z + t * (double)other.z);
w = (int)(it * (double)w + t * (double)other.w);
return;
}
template<>
Vector4<double> Vector4<double>::Lerp(const Vector4<double>& other, double t) const
{
Vector4d copy(*this);
copy.LerpSelf(other, t);
return copy;
}
template<>
Vector4<double> Vector4<int>::Lerp(const Vector4<int>& other, double t) const
{
Vector4d copy(this->ToDouble());
copy.LerpSelf(other.ToDouble(), t);
return copy;
}
template<>
Vector4<double> Vector4<double>::operator+(const Vector4<double>& other) const
{
#ifndef _EULE_NO_INTRINSICS_
// Move vector components and factors into registers
__m256d __vector_self = _mm256_set_pd(w, z, y, x);
__m256d __vector_other = _mm256_set_pd(other.w, other.z, other.y, other.x);
// Add the components
__m256d __sum = _mm256_add_pd(__vector_self, __vector_other);
// Retrieve and return these values
double sum[4];
_mm256_storeu_pd(sum, __sum);
return Vector4<double>(
sum[0],
sum[1],
sum[2],
sum[3]
);
#else
return Vector4<double>(
x + other.x,
y + other.y,
z + other.z,
w + other.w
);
#endif
}
template<typename T>
Vector4<T> Vector4<T>::operator+(const Vector4<T>& other) const
{
return Vector4<T>(
x + other.x,
y + other.y,
z + other.z,
w + other.w
);
}
template<>
void Vector4<double>::operator+=(const Vector4<double>& other)
{
#ifndef _EULE_NO_INTRINSICS_
// Move vector components and factors into registers
__m256d __vector_self = _mm256_set_pd(w, z, y, x);
__m256d __vector_other = _mm256_set_pd(other.w, other.z, other.y, other.x);
// Add the components
__m256d __sum = _mm256_add_pd(__vector_self, __vector_other);
// Retrieve and apply these values
double sum[4];
_mm256_storeu_pd(sum, __sum);
x = sum[0];
y = sum[1];
z = sum[2];
w = sum[3];
#else
x += other.x;
y += other.y;
z += other.z;
w += other.w;
#endif
return;
}
template<typename T>
void Vector4<T>::operator+=(const Vector4<T>& other)
{
x += other.x;
y += other.y;
z += other.z;
w += other.w;
return;
}
template<>
Vector4<double> Vector4<double>::operator-(const Vector4<double>& other) const
{
#ifndef _EULE_NO_INTRINSICS_
// Move vector components and factors into registers
__m256d __vector_self = _mm256_set_pd(w, z, y, x);
__m256d __vector_other = _mm256_set_pd(other.w, other.z, other.y, other.x);
// Subtract the components
__m256d __diff = _mm256_sub_pd(__vector_self, __vector_other);
// Retrieve and return these values
double diff[4];
_mm256_storeu_pd(diff, __diff);
return Vector4<double>(
diff[0],
diff[1],
diff[2],
diff[3]
);
#else
return Vector4<double>(
x - other.x,
y - other.y,
z - other.z,
w - other.w
);
#endif
}
template<typename T>
Vector4<T> Vector4<T>::operator-(const Vector4<T>& other) const
{
return Vector4<T>(
x - other.x,
y - other.y,
z - other.z,
w - other.w
);
}
template<>
void Vector4<double>::operator-=(const Vector4<double>& other)
{
#ifndef _EULE_NO_INTRINSICS_
// Move vector components and factors into registers
__m256d __vector_self = _mm256_set_pd(w, z, y, x);
__m256d __vector_other = _mm256_set_pd(other.w, other.z, other.y, other.x);
// Subtract the components
__m256d __diff = _mm256_sub_pd(__vector_self, __vector_other);
// Retrieve and apply these values
double diff[4];
_mm256_storeu_pd(diff, __diff);
x = diff[0];
y = diff[1];
z = diff[2];
w = diff[3];
#else
x -= other.x;
y -= other.y;
z -= other.z;
w -= other.w;
#endif
return;
}
template<typename T>
void Vector4<T>::operator-=(const Vector4<T>& other)
{
x -= other.x;
y -= other.y;
z -= other.z;
w -= other.w;
return;
}
template<>
Vector4<double> Vector4<double>::operator*(const double scale) const
{
#ifndef _EULE_NO_INTRINSICS_
// Move vector components and factors into registers
__m256d __vector_self = _mm256_set_pd(w, z, y, x);
__m256d __scalar = _mm256_set1_pd(scale);
// Multiply the components
__m256d __prod = _mm256_mul_pd(__vector_self, __scalar);
// Retrieve and return these values
double prod[4];
_mm256_storeu_pd(prod, __prod);
return Vector4<double>(
prod[0],
prod[1],
prod[2],
prod[3]
);
#else
return Vector4<double>(
x * scale,
y * scale,
z * scale,
w * scale
);
#endif
}
template<typename T>
Vector4<T> Vector4<T>::operator*(const T scale) const
{
return Vector4<T>(
x * scale,
y * scale,
z * scale,
w * scale
);
}
template<>
void Vector4<double>::operator*=(const double scale)
{
#ifndef _EULE_NO_INTRINSICS_
// Move vector components and factors into registers
__m256d __vector_self = _mm256_set_pd(w, z, y, x);
__m256d __scalar = _mm256_set1_pd(scale);
// Multiply the components
__m256d __prod = _mm256_mul_pd(__vector_self, __scalar);
// Retrieve and apply these values
double prod[4];
_mm256_storeu_pd(prod, __prod);
x = prod[0];
y = prod[1];
z = prod[2];
w = prod[3];
#else
x *= scale;
y *= scale;
z *= scale;
w *= scale;
#endif
return;
}
template<typename T>
void Vector4<T>::operator*=(const T scale)
{
x *= scale;
y *= scale;
z *= scale;
w *= scale;
return;
}
template<>
Vector4<double> Vector4<double>::operator/(const double scale) const
{
#ifndef _EULE_NO_INTRINSICS_
// Move vector components and factors into registers
__m256d __vector_self = _mm256_set_pd(w, z, y, x);
__m256d __scalar = _mm256_set1_pd(scale);
// Divide the components
__m256d __prod = _mm256_div_pd(__vector_self, __scalar);
// Retrieve and return these values
double prod[4];
_mm256_storeu_pd(prod, __prod);
return Vector4<double>(
prod[0],
prod[1],
prod[2],
prod[3]
);
#else
return Vector4<double>(
x / scale,
y / scale,
z / scale,
w / scale
);
#endif
}
template<typename T>
Vector4<T> Vector4<T>::operator/(const T scale) const
{
return Vector4<T>(
x / scale,
y / scale,
z / scale,
w / scale
);
}
template<>
void Vector4<double>::operator/=(const double scale)
{
#ifndef _EULE_NO_INTRINSICS_
// Move vector components and factors into registers
__m256d __vector_self = _mm256_set_pd(w, z, y, x);
__m256d __scalar = _mm256_set1_pd(scale);
// Divide the components
__m256d __prod = _mm256_div_pd(__vector_self, __scalar);
// Retrieve and apply these values
double prod[4];
_mm256_storeu_pd(prod, __prod);
x = prod[0];
y = prod[1];
z = prod[2];
w = prod[3];
#else
x /= scale;
y /= scale;
z /= scale;
w /= scale;
#endif
return;
}
template<typename T>
void Vector4<T>::operator/=(const T scale)
{
x /= scale;
y /= scale;
z /= scale;
w /= scale;
return;
}
template<typename T>
bool Vector4<T>::operator==(const Vector4<T>& other) const
{
return
(x == other.x) &&
(y == other.y) &&
(z == other.z) &&
(w == other.w);
}
// Good, optimized chad version for doubles
template<>
Vector4<double> Vector4<double>::operator*(const Matrix4x4& mat) const
{
Vector4<double> newVec;
newVec.x = (mat[0][0] * x) + (mat[0][1] * y) + (mat[0][2] * z) + (mat[0][3] * w);
newVec.y = (mat[1][0] * x) + (mat[1][1] * y) + (mat[1][2] * z) + (mat[1][3] * w);
newVec.z = (mat[2][0] * x) + (mat[2][1] * y) + (mat[2][2] * z) + (mat[2][3] * w);
newVec.w = (mat[3][0] * x) + (mat[3][1] * y) + (mat[3][2] * z) + (mat[3][3] * w);
return newVec;
}
// Slow, lame version for intcels
template<>
Vector4<int> Vector4<int>::operator*(const Matrix4x4& mat) const
{
Vector4<double> newVec;
newVec.x = (mat[0][0] * x) + (mat[0][1] * y) + (mat[0][2] * z) + (mat[0][3] * w);
newVec.y = (mat[1][0] * x) + (mat[1][1] * y) + (mat[1][2] * z) + (mat[1][3] * w);
newVec.z = (mat[2][0] * x) + (mat[2][1] * y) + (mat[2][2] * z) + (mat[2][3] * w);
newVec.w = (mat[3][0] * x) + (mat[3][1] * y) + (mat[3][2] * z) + (mat[3][3] * w);
return Vector4<int>(
(int)newVec.x,
(int)newVec.y,
(int)newVec.z,
(int)newVec.w
);
}
// Good, optimized chad version for doubles
template<>
void Vector4<double>::operator*=(const Matrix4x4& mat)
{
Vector4<double> buffer = *this;
// Should this still be reversed...? like, instead of mat[x][y], use mat[y][m]
// idk right now. check that if something doesn't work
x = (mat[0][0] * buffer.x) + (mat[0][1] * buffer.y) + (mat[0][2] * buffer.z) + (mat[0][3] * buffer.w);
y = (mat[1][0] * buffer.x) + (mat[1][1] * buffer.y) + (mat[1][2] * buffer.z) + (mat[1][3] * buffer.w);
z = (mat[2][0] * buffer.x) + (mat[2][1] * buffer.y) + (mat[2][2] * buffer.z) + (mat[2][3] * buffer.w);
w = (mat[3][0] * buffer.x) + (mat[3][1] * buffer.y) + (mat[3][2] * buffer.z) + (mat[3][3] * buffer.w);
return;
}
template<typename T>
Vector4<T> Vector4<T>::operator-() const
{
return Vector4<T>(
-x,
-y,
-z,
-w
);
}
template<typename T>
void Vector4<T>::operator=(const Vector4<T>& other)
{
x = other.x;
y = other.y;
z = other.z;
w = other.w;
return;
}
template<typename T>
void Vector4<T>::operator=(Vector4<T>&& other) noexcept
{
x = std::move(other.x);
y = std::move(other.y);
z = std::move(other.z);
w = std::move(other.w);
return;
}
// Slow, lame version for intcels
template<>
void Vector4<int>::operator*=(const Matrix4x4& mat)
{
Vector4<double> buffer(x, y, z, w);
// Should this still be reversed...? like, instead of mat[x][y], use mat[y][m]
// idk right now. check that if something doesn't work
x = (int)((mat[0][0] * buffer.x) + (mat[0][1] * buffer.y) + (mat[0][2] * buffer.z) + (mat[0][3] * buffer.w));
y = (int)((mat[1][0] * buffer.x) + (mat[1][1] * buffer.y) + (mat[1][2] * buffer.z) + (mat[1][3] * buffer.w));
z = (int)((mat[2][0] * buffer.x) + (mat[2][1] * buffer.y) + (mat[2][2] * buffer.z) + (mat[2][3] * buffer.w));
w = (int)((mat[3][0] * buffer.x) + (mat[3][1] * buffer.y) + (mat[3][2] * buffer.z) + (mat[3][3] * buffer.w));
return;
}
template<typename T>
bool Vector4<T>::operator!=(const Vector4<T>& other) const
{
return !operator==(other);
}
template<typename T>
Vector4<T>::operator Vector2<T>() const
{
return Vector2<T>(x, y);
}
template<typename T>
Vector4<T>::operator Vector3<T>() const
{
return Vector3<T>(x, y, z);
}
template class Vector4<int>;
template class Vector4<double>;
// Some handy predefines
template <typename T>
const Vector4<double> Vector4<T>::up(0, 1, 0, 0);
template <typename T>
const Vector4<double> Vector4<T>::down(0, -1, 0, 0);
template <typename T>
const Vector4<double> Vector4<T>::right(1, 0, 0, 0);
template <typename T>
const Vector4<double> Vector4<T>::left(-1, 0, 0, 0);
template <typename T>
const Vector4<double> Vector4<T>::forward(1, 0, 0, 0);
template <typename T>
const Vector4<double> Vector4<T>::backward(-1, 0, 0, 0);
template <typename T>
const Vector4<double> Vector4<T>::future(0, 0, 0, 1);
template <typename T>
const Vector4<double> Vector4<T>::past(0, 0, 0, -1);
template <typename T>
const Vector4<double> Vector4<T>::one(1, 1, 1, 1);
template <typename T>
const Vector4<double> Vector4<T>::zero(0, 0, 0, 0);