#include "CppUnitTest.h" #include "../Eule/Quaternion.h" #include "../Eule/Math.h" #include "../_TestingUtilities/HandyMacros.h" #include #include using namespace Microsoft::VisualStudio::CppUnitTestFramework; using namespace Eule; namespace TransformRelated { TEST_CLASS(_Quaternion) { private: std::mt19937 rng; public: // Constructor _Quaternion() { rng = std::mt19937((std::random_device())()); return; } // Tests that if constructed with the default constructor, that all values are 0 (but w should be 1) TEST_METHOD(Default_Constructor_All_0) { Quaternion q; Assert::IsTrue(Vector4d(0, 0, 0, 1) == q.GetRawValues()); return; } // Tests that getting and setting raw values works TEST_METHOD(Can_Set_Get_Raw_Values) { // Test 1000 times for (std::size_t i = 0; i < 1000; i++) { Vector4d v( rng() % 90, rng() % 90, rng() % 90, rng() % 90 ); Quaternion q(Vector4d(0, 0, 0, 0)); // Garbage values q.SetRawValues(v); Assert::IsTrue(v.Similar(q.GetRawValues())); } return; } // Tests that retreiving euler angles (without gimbal lock) results in the same values as put in TEST_METHOD(To_Euler_From_Euler) { // Test 1000 times for (std::size_t i = 0; i < 1000; i++) { // Create vector Vector3d eul( rng() % 90, rng() % 90, rng() % 90 ); // Create quaternion from vector Quaternion q(eul); // Create debug output std::wstringstream wss; wss << std::endl << "Actual vals: " << q.ToEulerAngles() << std::endl << "Target vals: " << eul << std::endl; // Assertion Assert::IsTrue(eul.Similar(q.ToEulerAngles()), wss.str().c_str()); } return; } // Tests that adding angles (0,0,0) does not modify the quaternion TEST_METHOD(Add_Angles_0_Does_Nothing) { Quaternion a(Vector3d(0, -45, 45)); Quaternion b(Vector3d(0, 0, 0)); Assert::IsTrue(Vector3d(0, -45, 45).Similar((a * b).ToEulerAngles())); return; } // Tests that subtracting angles (0,0,0) does not modify the quaternion TEST_METHOD(Sub_Angles_0_Does_Nothing) { Quaternion a(Vector3d(0, -45, 45)); Quaternion b(Vector3d(0, 0, 0)); Assert::IsTrue(Vector3d(0, -45, 45).Similar((a / b).ToEulerAngles())); return; } // Tests that subtracting by itself always returns (0,0,0) TEST_METHOD(Sub_Itself_Is_0) { // Run test 100 times for (std::size_t i = 0; i < 100; i++) { Quaternion a(Vector3d(LARGE_RAND_DOUBLE, LARGE_RAND_DOUBLE, LARGE_RAND_DOUBLE)); Assert::IsTrue(Vector3d(0,0,0).Similar((a / a).ToEulerAngles())); } return; } // Tests that rotating a vector is equal to multiplying it with the inverted rotation matrix TEST_METHOD(RotateVector_Equal_to_RotationMatrix) { // Run test 1000 times for (std::size_t i = 0; i < 1000; i++) { Quaternion a(Vector3d(LARGE_RAND_DOUBLE, LARGE_RAND_DOUBLE, LARGE_RAND_DOUBLE)); Vector3d point(32, 19, -14); Assert::IsTrue((point * a.ToRotationMatrix()).Similar(a * point)); } return; } // Tests that a *= b will result in the exact same outcome as a = a * b TEST_METHOD(MultiplyEquals_Operator_Same_Result_As_Multiply_Operator) { // Run tests 1000 times for (std::size_t i = 0; i < 1000; i++) { // Setup Quaternion a(Vector3d(rng() % 360, rng() % 360, rng() % 360)); Quaternion b(Vector3d(rng() % 360, rng() % 360, rng() % 360)); // Exercise Quaternion ref = a * b; a *= b; // Verify Assert::IsTrue(a.GetRawValues().Similar(ref.GetRawValues())); } return; } // Tests that a /= b will result in the exact same outcome as a = a / b TEST_METHOD(DivideEquals_Operator_Same_Result_As_Divide_Operator) { // Run tests 1000 times for (std::size_t i = 0; i < 1000; i++) { // Setup Quaternion a(Vector3d(rng() % 360, rng() % 360, rng() % 360)); Quaternion b(Vector3d(rng() % 360, rng() % 360, rng() % 360)); // Exercise Quaternion ref = a / b; a /= b; // Verify Assert::IsTrue(a.GetRawValues().Similar(ref.GetRawValues())); } return; } // Tests basic equals comparison -> true TEST_METHOD(Basic_EqualsComparison_True) { // Run tests 1000 times for (std::size_t i = 0; i < 1000; i++) { // Setup Vector3d e(rng() % 360, rng() % 360, rng() % 360); Quaternion a(e); Quaternion b(e); // Exercise and verify Assert::IsTrue(a == b); } return; } // Tests basic equals comparison -> true TEST_METHOD(Basic_EqualsComparison_False) { // Run tests 1000 times for (std::size_t i = 0; i < 1000; i++) { // Setup Vector3d ae(rng() % 360, rng() % 360, rng() % 360); Vector3d be(rng() % 360, rng() % 360, rng() % 360); // Abort if both vectors are equal if (ae == be) { i--; continue; } Quaternion a(ae); Quaternion b(be); // Exercise and verify Assert::IsFalse(a == b); } return; } // Tests that different euler angles return true, if the angle is the same. // Like [30, -10, 59] == [390, 350, 419] TEST_METHOD(Equals_Comparison_Same_Rotation_Different_EulerAngles) { // Run tests 1000 times for (std::size_t i = 0; i < 1000; i++) { // Setup // Create random rotation Vector3d ae(rng() % 360, rng() % 360, rng() % 360); // add or subtract a random multiple of 360 #define keep_rot_change_values (360.0 * (double)(rng() % 20) * ((rng()%2) ? 1.0 : -1.0)) Vector3d be(ae.x + keep_rot_change_values, ae.y + keep_rot_change_values, ae.z + keep_rot_change_values); #undef keep_rot_change_values // Create quaternions Quaternion a(ae); Quaternion b(be); // Exercise & Verify // Create debug output std::wstringstream wss; wss << "ae: " << ae << std::endl << "be: " << be << std::endl << "a: " << a << std::endl << "b: " << b << std::endl; // Assertion Assert::IsTrue(a == b, wss.str().c_str()); } return; } // Tests basic not-equals comparison -> false TEST_METHOD(Basic_NotEqualsComparison_False) { // Run tests 1000 times for (std::size_t i = 0; i < 1000; i++) { // Setup Vector3d e(rng() % 360, rng() % 360, rng() % 360); Quaternion a(e); Quaternion b(e); // Exercise and verify Assert::IsFalse(a != b); } return; } // Tests basic not-equals comparison -> true TEST_METHOD(Basic_NotEqualsComparison_True) { // Run tests 1000 times for (std::size_t i = 0; i < 1000; i++) { // Setup Vector3d ae(rng() % 360, rng() % 360, rng() % 360); Vector3d be(rng() % 360, rng() % 360, rng() % 360); // Abort if both vectors are equal if (ae == be) { i--; continue; } Quaternion a(ae); Quaternion b(be); // Exercise and verify Assert::IsTrue(a != b); } return; } }; }