#include "CppUnitTest.h" #include "../Eule/Matrix4x4.h" #include "../Eule/Vector3.h" #include "../_TestingUtilities/HandyMacros.h" #include using namespace Microsoft::VisualStudio::CppUnitTestFramework; using namespace Eule; namespace Matrices { TEST_CLASS(_Matrix4x4) { private: std::mt19937 rng; public: // Constructor _Matrix4x4() { rng = std::mt19937((std::random_device())()); return; } // Tests that a freshly created matrix is an identity matrix TEST_METHOD(New_Matrix_Is_Identity) { Matrix4x4 mat; for (std::size_t i = 0; i < 4; i++) for (std::size_t j = 0; j < 4; j++) if (i == j) Assert::AreEqual(1.0, mat[i][j]); else Assert::AreEqual(0.0, mat[i][j]); return; } // Test if setting values via array descriptors works TEST_METHOD(Can_Set_Values_ArrayDescriptor) { Matrix4x4 mat; mat[0][0] = 1; mat[0][1] = 2; mat[0][2] = 3; mat[0][3] = 4; mat[1][0] = 5; mat[1][1] = 6; mat[1][2] = 7; mat[1][3] = 8; mat[2][0] = 9; mat[2][1] = 10; mat[2][2] = 11; mat[2][3] = 12; mat[3][0] = 13; mat[3][1] = 14; mat[3][2] = 15; mat[3][3] = 16; for (std::size_t i = 0; i < 4; i++) for (std::size_t j = 0; j < 4; j++) Assert::AreEqual((double)(i * 4 + j + 1), mat[i][j]); return; } // Tests if setting values via letters works TEST_METHOD(Can_Set_Values_Letters) { Matrix4x4 mat; mat.a = 1; mat.b = 2; mat.c = 3; mat.d = 4; mat.e = 5; mat.f = 6; mat.g = 7; mat.h = 8; mat.i = 9; mat.j = 10; mat.k = 11; mat.l = 12; mat.m = 13; mat.n = 14; mat.o = 15; mat.p = 16; for (std::size_t i = 0; i < 4; i++) for (std::size_t j = 0; j < 4; j++) Assert::AreEqual((double)(i * 4 + j + 1), mat[i][j]); return; } // Tests if setting values via multiple initializer lists works TEST_METHOD(Can_Set_Values_Multiple_Initializer_Lists) { Matrix4x4 mat; mat[0] = { 1, 2, 3, 4 }; mat[1] = { 5, 6, 7, 8 }; mat[2] = { 9, 10, 11, 12 }; mat[3] = { 13, 14, 15, 16 }; for (std::size_t i = 0; i < 4; i++) for (std::size_t j = 0; j < 4; j++) Assert::AreEqual((double)(i * 4 + j + 1), mat[i][j]); return; } // Tests if values can be read correctly from the reference variables TEST_METHOD(Can_Read_Letters) { Matrix4x4 mat; // Populate matrix for (std::size_t i = 0; i < 4; i++) for (std::size_t j = 0; j < 4; j++) mat[i][j] = (double)(i * 4 + j + 1); // Check if values can be read Assert::AreEqual( 1.0, mat.a); Assert::AreEqual( 2.0, mat.b); Assert::AreEqual( 3.0, mat.c); Assert::AreEqual( 4.0, mat.d); Assert::AreEqual( 5.0, mat.e); Assert::AreEqual( 6.0, mat.f); Assert::AreEqual( 7.0, mat.g); Assert::AreEqual( 8.0, mat.h); Assert::AreEqual( 9.0, mat.i); Assert::AreEqual(10.0, mat.j); Assert::AreEqual(11.0, mat.k); Assert::AreEqual(12.0, mat.l); Assert::AreEqual(13.0, mat.m); Assert::AreEqual(14.0, mat.n); Assert::AreEqual(15.0, mat.o); Assert::AreEqual(16.0, mat.p); return; } // Tests if the copy constructor results in the same values as the reference given TEST_METHOD(CopyConstructor_Equal_Values) { Matrix4x4 mat1; // Fill with values for (std::size_t i = 0; i < 4; i++) for (std::size_t j = 0; j < 4; j++) mat1[i][j] = i * 4.0 + j; // Copy Matrix4x4 mat2(mat1); // Both equal? for (std::size_t i = 0; i < 4; i++) for (std::size_t j = 0; j < 4; j++) Assert::AreEqual(mat1[i][j], mat2[i][j]); return; } // Tests if the equals operator results in the same values as the reference given TEST_METHOD(Copy_Via_Equals_Operator) { Matrix4x4 mat1; // Fill with values for (std::size_t i = 0; i < 4; i++) for (std::size_t j = 0; j < 4; j++) mat1[i][j] = i * 4.0 + j; // Copy Matrix4x4 mat2 = mat1; // Both equal? for (std::size_t i = 0; i < 4; i++) for (std::size_t j = 0; j < 4; j++) Assert::AreEqual(mat1[i][j], mat2[i][j]); return; } // Tests if the values of a matrix constructed via a copy constructor can be changed without modifying the object copied from TEST_METHOD(Copy_Is_Independent_CopyConstructor) { Matrix4x4 mat1; // Fill with values for (std::size_t i = 0; i < 4; i++) for (std::size_t j = 0; j < 4; j++) mat1[i][j] = i * 4.0 + j; // Copy Matrix4x4 mat2(mat1); // Change values in mat2 for (std::size_t i = 0; i < 4; i++) for (std::size_t j = 0; j < 4; j++) mat2[i][j] *= -99; // Is mat1 untouched? for (std::size_t i = 0; i < 4; i++) for (std::size_t j = 0; j < 4; j++) Assert::AreEqual((double)(i * 4 + j), mat1[i][j]); // Are the values of mat2 correct? for (std::size_t i = 0; i < 4; i++) for (std::size_t j = 0; j < 4; j++) Assert::AreEqual((double)(i * 4 + j) * -99, mat2[i][j]); return; } // Tests if the values of a matrix constructed copied via the equals operator can be changed without modifying the object copied from TEST_METHOD(Copy_Is_Independent_EqualOperator) { Matrix4x4 mat1; // Fill with values for (std::size_t i = 0; i < 4; i++) for (std::size_t j = 0; j < 4; j++) mat1[i][j] = i * 4.0 + j; // Copy Matrix4x4 mat2 = mat1; // Change values in mat2 for (std::size_t i = 0; i < 4; i++) for (std::size_t j = 0; j < 4; j++) mat2[i][j] *= -99; // Is mat1 untouched? for (std::size_t i = 0; i < 4; i++) for (std::size_t j = 0; j < 4; j++) Assert::AreEqual((double)(i * 4 + j), mat1[i][j]); // Are the values of mat2 correct? for (std::size_t i = 0; i < 4; i++) for (std::size_t j = 0; j < 4; j++) Assert::AreEqual((double)(i * 4 + j) * -99, mat2[i][j]); return; } // Tests that copying via operator= works TEST_METHOD(Copy_Operator) { // Setup Matrix4x4 a; a[0] = { 1, 0, 0, 5 }; a[1] = { 2, 0, 0, 6 }; a[2] = { 3, 0, 0, 7 }; a[3] = { 4, 0, 0, 8 }; Matrix4x4 a_toCopy; a_toCopy[0] = { 1, 0, 0, 5 }; a_toCopy[1] = { 2, 0, 0, 6 }; a_toCopy[2] = { 3, 0, 0, 7 }; a_toCopy[3] = { 4, 0, 0, 8 }; // Exercise Matrix4x4 b = a_toCopy; // Verify Assert::IsTrue(a == a_toCopy, L"a got destroyed!"); Assert::IsTrue(b == a, L"a does not match b!"); return; } // Tests that moving via operator= works TEST_METHOD(Move_Operator) { // Setup Matrix4x4 a; a[0] = { 1, 0, 0, 5 }; a[1] = { 2, 0, 0, 6 }; a[2] = { 3, 0, 0, 7 }; a[3] = { 4, 0, 0, 8 }; Matrix4x4 a_backup = a; // Exercise Matrix4x4 b = std::move(a); // Verify Assert::IsTrue(b == a_backup, L"Values don't match!"); return; } // Tests if the multiply-equals (*=) operator works as intended TEST_METHOD(Multiplication_Equals) { // Populate 1 Matrix4x4 mat1; mat1[0] = { 12, 33, 43, 34 }; mat1[1] = { 0, 4, 3, 11 }; mat1[2] = { 76, 5, 42, 4 }; mat1[3] = { 0, 0, 0, 1 }; // Populate 2 Matrix4x4 mat2; mat2[0] = { 32, 11, 23, 6 }; mat2[1] = { 54, 23, 64, 9 }; mat2[2] = { 64, 43, 12, 16 }; mat2[3] = { 0, 0, 0, 1 }; // Multiply mat1 *= mat2; // Check Matrix4x4 expected; expected[0] = { 4918.0, 2740.0, 2904.0, 40 }; expected[1] = { 408.0, 221.0, 292.0, 20 }; expected[2] = { 5390.0, 2757.0, 2572.0, 20 }; expected[3] = { 0, 0, 0, 1 }; Assert::IsTrue(mat1.v == expected.v); return; } // Tests if the multiplication operator works as intended TEST_METHOD(Multiplication) { // Populate 1 Matrix4x4 mat1; mat1[0] = { 12, 33, 43, 34 }; mat1[1] = { 0, 4, 3, 11 }; mat1[2] = { 76, 5, 42, 4 }; mat1[3] = { 0, 0, 0, 1 }; // Populate 2 Matrix4x4 mat2; mat2[0] = { 32, 11, 23, 6 }; mat2[1] = { 54, 23, 64, 9 }; mat2[2] = { 64, 43, 12, 16 }; mat2[3] = { 0, 0, 0, 1 }; // Multiply Matrix4x4 mat3 = mat1 * mat2; // Check Matrix4x4 expected; expected[0] = { 4918.0, 2740.0, 2904.0, 40 }; expected[1] = { 408.0, 221.0, 292.0, 20 }; expected[2] = { 5390.0, 2757.0, 2572.0, 20 }; expected[3] = { 0, 0, 0, 1 }; Assert::IsTrue(mat3.v == expected.v); return; } // Tests if GetTranslationComponent returns the correct values TEST_METHOD(GetTranslationComponent) { // Create and populate mat Matrix4x4 mat; mat.d = 69; mat.h = 32; mat.l = 16; // Get translation component Vector3d translation = mat.GetTranslationComponent(); // Check Assert::AreEqual(69.0, translation.x); Assert::AreEqual(32.0, translation.y); Assert::AreEqual(16.0, translation.z); return; } // Tests if SetTranslationComponent returns the correct values TEST_METHOD(SetTranslationComponent) { // Create and populate mat Vector3d translation(69, 32, 16); // Set translation component Matrix4x4 mat; mat.SetTranslationComponent(translation); // Check Assert::AreEqual(69.0, mat.d); Assert::AreEqual(32.0, mat.h); Assert::AreEqual(16.0, mat.l); return; } // Tests that transpose3x3 works TEST_METHOD(Transpose3x3) { Matrix4x4 m; m[0] = { 0, 0, 0, 0 }; m[1] = { 3, 0, 4, 0 }; m[2] = { 0, 0, 2, 5 }; m[3] = { 9, 0, 6, 0 }; Matrix4x4 target; target[0] = { 0, 3, 0, 0 }; target[1] = { 0, 0, 0, 0 }; target[2] = { 0, 4, 2, 5 }; target[3] = { 9, 0, 6, 0 }; // Create debug output std::wstringstream wss; wss << std::endl << "Actual: " << m.Transpose3x3() << std::endl << "Target: " << target << std::endl; Assert::IsTrue(target == m.Transpose3x3(), wss.str().c_str()); return; } // Tests that transpose4x4 works TEST_METHOD(Transpose4x4) { Matrix4x4 m; m[0] = { 0, 0, 0, 0 }; m[1] = { 3, 0, 4, 0 }; m[2] = { 0, 0, 2, 5 }; m[3] = { 9, 0, 6, 0 }; Matrix4x4 target; target[0] = { 0, 3, 0, 9 }; target[1] = { 0, 0, 0, 0 }; target[2] = { 0, 4, 2, 6 }; target[3] = { 0, 0, 5, 0 }; // Create debug output std::wstringstream wss; wss << std::endl << "Actual: " << m.Transpose4x4() << std::endl << "Target: " << target << std::endl; Assert::IsTrue(target == m.Transpose4x4(), wss.str().c_str()); return; } // Tests that IsInvertible3x3 works -> true TEST_METHOD(Is_Invertible_3x3_True) { Matrix4x4 m; m[0] = { 0.56601, -0.87207, 0.52783, 488.00000 }; m[1] = { -0.55281, 0.41590, 0.85470, 500.00000 }; m[2] = { -1.09497, -0.66076, -0.15866, -155.09390 }; m[3] = { 0.00000, 0.00000, 0.00000, 0.00000 }; Assert::IsTrue(m.IsInversible3x3()); return; } // Tests that IsInvertible3x3 works -> false TEST_METHOD(Is_Invertible_3x3_False) { Matrix4x4 m; m[0] = { 0, 0, 1, 0 }; m[1] = { 0, 0, 0, 0 }; m[2] = { 0, 0, 0, 0 }; m[3] = { 0, 0, 0, 0 }; Assert::IsFalse(m.IsInversible3x3()); return; } // Tests that IsInvertible4x4 works -> true TEST_METHOD(Is_Invertible_4x4_True) { Matrix4x4 m; m[0] = { 0.56601, -0.87207, 0.52783, 488.00000 }; m[1] = { -0.55281, 0.41590, 0.85470, 500.00000 }; m[2] = { -1.09497, -0.66076, -0.15866, -155.09390 }; m[3] = { 0.00000, 0.00000, 0.00000, 1.00000 }; Assert::IsTrue(m.IsInversible4x4()); return; } // Tests that IsInvertible4x4 works -> false TEST_METHOD(Is_Invertible_4x4_False) { Matrix4x4 m; m[0] = { 0.56601, -0.87207, 0.52783, 488.00000 }; m[1] = { -0.55281, 0.41590, 0.85470, 500.00000 }; m[2] = { -1.09497, -0.66076, -0.15866, -155.09390 }; m[3] = { 0.00000, 0.00000, 0.00000, 0.00000 }; Assert::IsFalse(m.IsInversible4x4()); return; } // Tests that inverting a 3x3 matrix (scale, rotation, translation) works TEST_METHOD(Inverse3x3) { // Invert 50 randomly generated matrices for (std::size_t i = 0; i < 50;) { Matrix4x4 m; m[0] = { LARGE_RAND_DOUBLE, LARGE_RAND_DOUBLE, LARGE_RAND_DOUBLE, LARGE_RAND_DOUBLE }; m[1] = { LARGE_RAND_DOUBLE, LARGE_RAND_DOUBLE, LARGE_RAND_DOUBLE, LARGE_RAND_DOUBLE }; m[2] = { LARGE_RAND_DOUBLE, LARGE_RAND_DOUBLE, LARGE_RAND_DOUBLE, LARGE_RAND_DOUBLE }; m[3] = { LARGE_RAND_DOUBLE, LARGE_RAND_DOUBLE, LARGE_RAND_DOUBLE, LARGE_RAND_DOUBLE }; if (m.IsInversible3x3()) { Matrix4x4 inv_m = m.Inverse3x3(); Matrix4x4 result = m * inv_m; // Create debug output std::wstringstream wss; wss << std::endl << "i: " << i << std::endl << "Actual: " << result << std::endl << "Target: " << Matrix4x4() << std::endl; Assert::IsTrue(result.Similar(Matrix4x4()), wss.str().c_str()); // Default constructor is identity matrix i++; } } return; } // Tests that inverting a 4x4 matrix works TEST_METHOD(Inverse4x4) { // Invert 50 randomly generated matrices for (std::size_t i = 0; i < 50;) { Matrix4x4 m; m[0] = { LARGE_RAND_DOUBLE, LARGE_RAND_DOUBLE, LARGE_RAND_DOUBLE, LARGE_RAND_DOUBLE }; m[1] = { LARGE_RAND_DOUBLE, LARGE_RAND_DOUBLE, LARGE_RAND_DOUBLE, LARGE_RAND_DOUBLE }; m[2] = { LARGE_RAND_DOUBLE, LARGE_RAND_DOUBLE, LARGE_RAND_DOUBLE, LARGE_RAND_DOUBLE }; m[3] = { LARGE_RAND_DOUBLE, LARGE_RAND_DOUBLE, LARGE_RAND_DOUBLE, LARGE_RAND_DOUBLE }; if (m.IsInversible4x4()) { Matrix4x4 inv_m = m.Inverse4x4(); // Create debug output std::wstringstream wss; wss << std::endl << "i: " << i << std::endl << "Actual: " << m.Multiply4x4(inv_m) << std::endl << "Target: " << Matrix4x4() << std::endl; Assert::IsTrue((m.Multiply4x4(inv_m)).Similar(Matrix4x4(), 0.0001), wss.str().c_str()); // Default constructor is identity matrix i++; } } return; } // Tests the Multiply4x4 method, which does an actual 4x4 multiplication TEST_METHOD(Multiply4x4) { Matrix4x4 a; a[0] = { 0, 1, 2, 3 }; a[1] = { 4, 5, 6, 7 }; a[2] = { 8, 9, 0, 1 }; a[3] = { 2, 3, 4, 5 }; Matrix4x4 b; b[0] = { 9, 8, 7, 6 }; b[1] = { 5, 4, 3, 2 }; b[2] = { 1, 0, 9, 8 }; b[3] = { 7, 6, 5, 4 }; Matrix4x4 e; // Expected e[0] = { 28, 22, 36, 30 }; e[1] = { 116, 94, 132, 110 }; e[2] = { 124, 106, 88, 70 }; e[3] = { 72, 58, 84, 70 }; // Create debug output std::wstringstream wss; wss << std::endl << "Actual: " << a.Multiply4x4(b) << std::endl << "Target: " << e << std::endl; Assert::IsTrue(a.Multiply4x4(b).Similar(e), wss.str().c_str()); } // Tests the DropTranslationComponents method. It should return itself, with d,h,l = 0,0,0 TEST_METHOD(DropTranslationComponents) { // Setup Matrix4x4 a; a[0] = { 0, 1, 2, 3 }; a[1] = { 4, 5, 6, 7 }; a[2] = { 8, 9, 0, 1 }; a[3] = { 2, 3, 4, 5 }; Matrix4x4 e; // Expected e[0] = { 0, 1, 2, 0 }; e[1] = { 4, 5, 6, 0 }; e[2] = { 8, 9, 0, 0 }; e[3] = { 2, 3, 4, 5 }; // Exercise, Verify Assert::IsTrue(e == a.DropTranslationComponents()); return; } //! Tests that adding two matrices works as intended TEST_METHOD(Operator_Add) { // Setup Matrix4x4 a; a[0] = { -9, 5, 6, 7 }; a[1] = { 1, 2, 5, 0 }; a[2] = { 2, -2, 7, 5 }; a[3] = { 3, 0, 3, 0 }; Matrix4x4 b; b[0] = { 6, 0, 5, 0 }; b[1] = { 3, 0, 1, 1 }; b[2] = { 1, 7, 2, 7 }; b[3] = { 0, 2, 0, 0 }; Matrix4x4 exp; // Expected exp[0] = { -3, 5, 11, 7 }; exp[1] = { 4, 2, 6, 1 }; exp[2] = { 3, 5, 9, 12 }; exp[3] = { 3, 2, 3, 0 }; // Exercise Matrix4x4 result = a + b; // Verify Assert::IsTrue(exp == result); return; } //! Tests that adding two matrices works as intended TEST_METHOD(Operator_AddEquals) { // Setup Matrix4x4 a; a[0] = { -9, 5, 6, 7 }; a[1] = { 1, 2, 5, 0 }; a[2] = { 2, -2, 7, 5 }; a[3] = { 3, 0, 3, 0 }; Matrix4x4 b; b[0] = { 6, 0, 5, 0 }; b[1] = { 3, 0, 1, 1 }; b[2] = { 1, 7, 2, 7 }; b[3] = { 0, 2, 0, 0 }; Matrix4x4 exp; // Expected exp[0] = { -3, 5, 11, 7 }; exp[1] = { 4, 2, 6, 1 }; exp[2] = { 3, 5, 9, 12 }; exp[3] = { 3, 2, 3, 0 }; // Exercise a += b; // Verify Assert::IsTrue(exp == a); return; } //! Tests that subtracting two matrices works as intended TEST_METHOD(Operator_Sub) { // Setup Matrix4x4 a; a[0] = { -9, 5, 6, 7 }; a[1] = { 1, 2, 5, 0 }; a[2] = { 2, -2, 7, 5 }; a[3] = { 3, 0, 3, 0 }; Matrix4x4 b; b[0] = { -6, -0, -5, -0 }; b[1] = { -3, -0, -1, -1 }; b[2] = { -1, -7, -2, -7 }; b[3] = { -0, -2, -0, -0 }; Matrix4x4 exp; // Expected exp[0] = { -3, 5, 11, 7 }; exp[1] = { 4, 2, 6, 1 }; exp[2] = { 3, 5, 9, 12 }; exp[3] = { 3, 2, 3, 0 }; // Exercise Matrix4x4 result = a - b; // Verify Assert::IsTrue(exp == result); return; } //! Tests that subtracting two matrices works as intended TEST_METHOD(Operator_SubEuqals) { // Setup Matrix4x4 a; a[0] = { -9, 5, 6, 7 }; a[1] = { 1, 2, 5, 0 }; a[2] = { 2, -2, 7, 5 }; a[3] = { 3, 0, 3, 0 }; Matrix4x4 b; b[0] = { -6, -0, -5, -0 }; b[1] = { -3, -0, -1, -1 }; b[2] = { -1, -7, -2, -7 }; b[3] = { -0, -2, -0, -0 }; Matrix4x4 exp; // Expected exp[0] = { -3, 5, 11, 7 }; exp[1] = { 4, 2, 6, 1 }; exp[2] = { 3, 5, 9, 12 }; exp[3] = { 3, 2, 3, 0 }; // Exercise a -= b; // Verify Assert::IsTrue(exp == a); return; } // Tests that the multiplication operator for a double parameter works TEST_METHOD(Operator_MultiplyDouble) { // Setup Matrix4x4 a; a[0] = { -9, 5, 6, 7 }; a[1] = { 1, 2, 5, 0 }; a[2] = { 2,-2, 7, 5 }; a[3] = { 3, 0, 3, 0 }; double s = LARGE_RAND_DOUBLE; Matrix4x4 exp; // Expected exp[0] = { -9*s, 5*s, 6*s, 7*s }; exp[1] = { 1*s, 2*s, 5*s, 0*s }; exp[2] = { 2*s,-2*s, 7*s, 5*s }; exp[3] = { 3*s, 0*s, 3*s, 0*s }; // Exercise Matrix4x4 result = a * s; // Verify Assert::IsTrue(exp.Similar(result)); return; } // Tests that the multiplication operator for a double parameter works TEST_METHOD(Operator_MultiplyEqualsDouble) { // Setup Matrix4x4 a; a[0] = { -9, 5, 6, 7 }; a[1] = { 1, 2, 5, 0 }; a[2] = { 2,-2, 7, 5 }; a[3] = { 3, 0, 3, 0 }; double s = LARGE_RAND_DOUBLE; Matrix4x4 exp; // Expected exp[0] = { -9*s, 5*s, 6*s, 7*s }; exp[1] = { 1*s, 2*s, 5*s, 0*s }; exp[2] = { 2*s,-2*s, 7*s, 5*s }; exp[3] = { 3*s, 0*s, 3*s, 0*s }; // Exercise a *= s; // Verify Assert::IsTrue(exp.Similar(a)); return; } // Tests that the division operator for a double parameter works TEST_METHOD(Operator_DivideDouble) { // Setup Matrix4x4 a; a[0] = { -9, 5, 6, 7 }; a[1] = { 1, 2, 5, 0 }; a[2] = { 2,-2, 7, 5 }; a[3] = { 3, 0, 3, 0 }; double s = LARGE_RAND_DOUBLE; Matrix4x4 exp; // Expected exp[0] = { -9/s, 5/s, 6/s, 7/s }; exp[1] = { 1/s, 2/s, 5/s, 0/s }; exp[2] = { 2/s,-2/s, 7/s, 5/s }; exp[3] = { 3/s, 0/s, 3/s, 0/s }; // Exercise Matrix4x4 result = a / s; // Verify Assert::IsTrue(exp.Similar(result)); return; } // Tests that the division operator for a double parameter works TEST_METHOD(Operator_DivideEqualsDouble) { // Setup Matrix4x4 a; a[0] = { -9, 5, 6, 7 }; a[1] = { 1, 2, 5, 0 }; a[2] = { 2,-2, 7, 5 }; a[3] = { 3, 0, 3, 0 }; double s = LARGE_RAND_DOUBLE; Matrix4x4 exp; // Expected exp[0] = { -9/s, 5/s, 6/s, 7/s }; exp[1] = { 1/s, 2/s, 5/s, 0/s }; exp[2] = { 2/s,-2/s, 7/s, 5/s }; exp[3] = { 3/s, 0/s, 3/s, 0/s }; // Exercise a /= s; // Verify Assert::IsTrue(exp.Similar(a)); return; } // Tests that matrix division (multiplication with inverse) works TEST_METHOD(Operator_DivideMatrix) { // Setup Matrix4x4 a; a[0] = { 0.0503814, 0.3314391, 0.9421304, 33 }; a[1] = { 0.4941404, 0.8115034, -0.3119095, 44 }; a[2] = { -0.8679211, 0.4812591, -0.1228928 , 55 }; a[3] = { 0, 0, 0, 1 }; Matrix4x4 b; b[0] = { -0.3980391, -0.5301175, -0.7486925, 3 }; b[1] = { 0.3352839, 0.6756021, -0.6566175, 4 }; b[2] = { 0.8539026, -0.5123839, -0.0911762 , 5 }; b[3] = { 0, 0, 0, 1 }; Matrix4x4 expected = a * b.Inverse3x3(); // Just to be sure, but should already be set expected.SetTranslationComponent(Vector3d(30, 40, 50)); // Exercise Matrix4x4 actual = a / b; // Verify Assert::IsTrue(expected.Similar(actual)); return; } // Tests that matrix division (multiplication with inverse) works TEST_METHOD(Operator_DivideEqualsMatrix) { // Setup Matrix4x4 a; a[0] = { 0.0503814, 0.3314391, 0.9421304, 33 }; a[1] = { 0.4941404, 0.8115034, -0.3119095, 44 }; a[2] = { -0.8679211, 0.4812591, -0.1228928 , 55 }; a[3] = { 0, 0, 0, 1 }; Matrix4x4 b; b[0] = { -0.3980391, -0.5301175, -0.7486925, 3 }; b[1] = { 0.3352839, 0.6756021, -0.6566175, 4 }; b[2] = { 0.8539026, -0.5123839, -0.0911762 , 5 }; b[3] = { 0, 0, 0, 1 }; Matrix4x4 expected = a * b.Inverse3x3(); // Just to be sure, but should already be set expected.SetTranslationComponent(Vector3d(30, 40, 50)); // Exercise a /= b; // Verify Assert::IsTrue(expected.Similar(a)); return; } // Tests that Math::Similar() works -> true TEST_METHOD(Similar_True) { Matrix4x4 a; a[0] = { 1, 0, 0, 0 }; a[1] = { 0, 1, 0, 0 }; a[2] = { 0, 0, 1, 0 }; a[3] = { 0, 0, 0, 1 }; Matrix4x4 b; b[0] = { 1, -9e-20, 2e-8, 9e-19 }; b[1] = { 12e-19, 1, -20e-15, -6.9e-29 }; b[2] = { -69e-25, 13e-23, 1, 4.301e-15 }; b[3] = { -23e-19, 23e-19, 25e-7, 1 }; Assert::IsTrue(a.Similar(b)); } // Tests that Math::Similar() works -> false TEST_METHOD(Similar_False) { Matrix4x4 a; a[0] = { 1, 0, 0, 0 }; a[1] = { 0, 1, 0, 0 }; a[2] = { 0, 0, 1, 0 }; a[3] = { 0, 0, 0, 1 }; Matrix4x4 b; b[0] = { 1, -9e-20, 2e-8, 9e-19 }; b[1] = { 12e-19, 1, -20e-15, 0.05 }; // <-- b[2] = { -69e-25, 13e-23, 1, 4.301e-15 }; b[3] = { -23e-19, 23e-19, 25e-7, 1 }; Assert::IsFalse(a.Similar(b)); } // Tests if the equal operator (==) and not-equals operator (!=) work (equal: false) TEST_METHOD(Operator_Equals_NotEquals_False) { Matrix4x4 a; a[0] = { 0x0, 0x1, 0x2, 0x3 }; a[1] = { 0x4, 0x5, 0x6, 0x7 }; a[2] = { 0x8, 0x9, 0xA, 0xB }; a[3] = { 0xC, 0xD, 0xE, 0xF }; Matrix4x4 b; b[3] = { 0xF ,0xD, 0xE, 0xC }; b[2] = { 0xB ,0x9, 0xA, 0x8 }; b[1] = { 0x7 ,0x5, 0x6, 0x4 }; b[0] = { 0x3 ,0x1, 0x2, 0x0 }; Assert::IsFalse(a == b); Assert::IsTrue(a != b); return; } // Tests if the equal operator (==) and not-equals operator (!=) work (equal: true) TEST_METHOD(Operator_Equals_False) { Matrix4x4 a; a[0] = { 0x0, 0x1, 0x2, 0x3 }; a[1] = { 0x4, 0x5, 0x6, 0x7 }; a[2] = { 0x8, 0x9, 0xA, 0xB }; a[3] = { 0xC, 0xD, 0xE, 0xF }; Matrix4x4 b; b[0] = { 0x0, 0x1, 0x2, 0x3 }; b[1] = { 0x4, 0x5, 0x6, 0x7 }; b[2] = { 0x8, 0x9, 0xA, 0xB }; b[3] = { 0xC, 0xD, 0xE, 0xF }; Assert::IsTrue(a == b); Assert::IsFalse(a != b); return; } // Tests if the equal const operator (==) and not-equals operator (!=) work (equal: false) TEST_METHOD(Operator_Equals_Const_NotEquals_False) { Matrix4x4 a; a[0] = { 0x0, 0x1, 0x2, 0x3 }; a[1] = { 0x4, 0x5, 0x6, 0x7 }; a[2] = { 0x8, 0x9, 0xA, 0xB }; a[3] = { 0xC, 0xD, 0xE, 0xF }; Matrix4x4 b; b[3] = { 0xF ,0xD, 0xE, 0xC }; b[2] = { 0xB ,0x9, 0xA, 0x8 }; b[1] = { 0x7 ,0x5, 0x6, 0x4 }; b[0] = { 0x3 ,0x1, 0x2, 0x0 }; const Matrix4x4 a_const = a; const Matrix4x4 b_const = b; Assert::IsFalse(a_const == b_const); Assert::IsTrue(a_const != b_const); return; } // Tests if the equal const operator (==) and not-equals operator (!=) work (equal: true) TEST_METHOD(Operator_Equals_Const_False) { Matrix4x4 a; a[0] = { 0x0, 0x1, 0x2, 0x3 }; a[1] = { 0x4, 0x5, 0x6, 0x7 }; a[2] = { 0x8, 0x9, 0xA, 0xB }; a[3] = { 0xC, 0xD, 0xE, 0xF }; Matrix4x4 b; b[0] = { 0x0, 0x1, 0x2, 0x3 }; b[1] = { 0x4, 0x5, 0x6, 0x7 }; b[2] = { 0x8, 0x9, 0xA, 0xB }; b[3] = { 0xC, 0xD, 0xE, 0xF }; const Matrix4x4 a_const = a; const Matrix4x4 b_const = b; Assert::IsTrue(a_const == b_const); Assert::IsFalse(a_const != b_const); return; } }; }