Translated Math/Oscillate tests

This commit is contained in:
Leonetienne 2022-02-11 11:09:54 +01:00
parent ebdf8b85dd
commit d17993a322

View File

@ -1,232 +1,220 @@
#include "CppUnitTest.h"
#include "../_TestingUtilities/Testutil.h"
#include "../Eule/Random.h"
#include "../Eule/Math.h"
#include "../Eule/Constants.h"
#include <array>
#include <sstream>
#include "Catch2.h"
#include <Eule/Random.h>
#include <Eule/Math.h>
#include <Eule/Constants.h>
using namespace Microsoft::VisualStudio::CppUnitTestFramework;
using namespace Eule;
namespace _Math
// Checks that an oscillation of speed 1 between -1 and 1 is just equal to sin(counter*pi-pi/2)
TEST_CASE("Oracle_Sin", "[Math][Oscillate]")
{
TEST_CLASS(_Oscillate)
{
public:
// Test 1000 random floats
for (std::size_t i = 0; i < 1000; i++)
{
// Setup
const double rnd = Random::RandomRange(-1000, 1000);
// Checks that an oscillation of speed 1 between -1 and 1 is just equal to sin(counter*pi-pi/2)
TEST_METHOD(Oracle_Sin)
{
// Test 1000 random floats
for (std::size_t i = 0; i < 1000; i++)
{
// Setup
const double rnd = Random::RandomRange(-1000, 1000);
// Exercise
const double result = Math::Oscillate(-1, 1, rnd, 1);
// Exercise
const double result = Math::Oscillate(-1, 1, rnd, 1);
// Verify
const double expected = sin(rnd * PI - HALF_PI);
Assert::IsTrue(Math::Similar(expected, result));
}
// Verify
const double expected = sin(rnd * PI - HALF_PI);
REQUIRE(Math::Similar(expected, result));
}
return;
}
// Tests that the result is a, if the counter is 0 or a whole, even integer
TEST_METHOD(Returns_a_For_Counter_0)
{
// Test 1000 random floats
for (std::size_t i = 0; i < 1000; i++)
{
// Setup
const double a = Random::RandomRange(-1000, 1000);
const double b = Random::RandomRange(-1000, 1000);
const int even = Random::RandomIntRange(-1000, 1000) & ~1;
// Exercise
const double result = Math::Oscillate(a, b, even, 1);
// Verify
const double expected = a;
std::wstringstream wss;
wss << std::endl
<< "a: " << a << std::endl
<< "b: " << b << std::endl
<< "expected: " << expected << std::endl
<< "result: " << result << std::endl
<< std::endl;
Assert::IsTrue(Math::Similar(expected, result), wss.str().c_str());
}
}
// Tests that the result is b, if the counter is a whole, uneven integer
TEST_METHOD(Returns_b_For_Uneven_Whole_Counter)
{
// Test 1000 random floats
for (std::size_t i = 0; i < 1000; i++)
{
// Setup
const double a = Random::RandomRange(-1000, 1000);
const double b = Random::RandomRange(-1000, 1000);
const int uneven = Random::RandomIntRange(-1000, 1000) | 1;
// Exercise
const double result = Math::Oscillate(a, b, uneven, 1);
// Verify
const double expected = b;
Assert::IsTrue(Math::Similar(expected, result));
}
}
// Tests that the result is (a+b)/2, when counter satisfies (int)x + 0.5
TEST_METHOD(Returns_ab_mean_for_intx_plus_0p5)
{
// Test 1000 random floats
for (std::size_t i = 0; i < 1000; i++)
{
// Setup
const double a = Random::RandomRange(-1000, 1000);
const double b = Random::RandomRange(-1000, 1000);
const int anInt = Random::RandomIntRange(-1000, 1000);
// Exercise
const double result = Math::Oscillate(a, b, anInt + 0.5, 1);
// Verify
const double expected = (a+b) / 2.0;
std::wstringstream wss;
wss << std::endl
<< "a: " << a << std::endl
<< "b: " << b << std::endl
<< "expected: " << expected << std::endl
<< "result: " << result << std::endl
<< std::endl;
Assert::IsTrue(Math::Similar(expected, result), wss.str().c_str());
}
}
// Tests that the result is (3a+b)/4, when counter satisfies 2(int)x + 0.25
TEST_METHOD(Returns_3ab_mean_for_intx_plus_0p25_counterbase_even)
{
// Test 1000 random floats
for (std::size_t i = 0; i < 1000; i++)
{
// Setup
const double a = Random::RandomRange(-1, 1);
const double b = Random::RandomRange(-1, 1);
const int even = Random::RandomIntRange(-1000, 1000) & ~1;
// Exercise
const double result = Math::Oscillate(a, b, even + 0.25, 1);
// Verify
const double expected = (3*a + b) / 4.0;
std::wstringstream wss;
wss << std::endl
<< "a: " << a << std::endl
<< "b: " << b << std::endl
<< "expected: " << expected << std::endl
<< "result: " << result << std::endl
<< std::endl;
// Oscillate is not linear, we just want a really rough approximation
Assert::IsTrue(Math::Similar(expected, result, 0.4), wss.str().c_str());
}
}
// Tests that the result is (a+3b)/4, when counter satisfies 2(int)x + 0.75
TEST_METHOD(Returns_a3b_mean_for_intx_plus_0p75_counterbase_even)
{
// Test 1000 random floats
for (std::size_t i = 0; i < 1000; i++)
{
// Setup
const double a = Random::RandomRange(-1, 1);
const double b = Random::RandomRange(-1, 1);
const int even = Random::RandomIntRange(-1000, 1000) & ~1;
// Exercise
const double result = Math::Oscillate(a, b, even + 0.75, 1);
// Verify
const double expected = (a + 3*b) / 4.0;
// Oscillate is not linear, we just want a really rough approximation
Assert::IsTrue(Math::Similar(expected, result, 0.4)); // Oscillate is not linear
}
}
// Tests that the result is (a+3b)/4, when counter satisfies 2(int)x+1 + 0.25
TEST_METHOD(Returns_3ab_mean_for_intx_plus_0p25_counterbase_uneven)
{
// Test 1000 random floats
for (std::size_t i = 0; i < 1000; i++)
{
// Setup
const double a = Random::RandomRange(-1, 1);
const double b = Random::RandomRange(-1, 1);
const int uneven = Random::RandomIntRange(-1000, 1000) | 1;
// Exercise
const double result = Math::Oscillate(a, b, uneven + 0.25, 1);
// Verify
const double expected = (a + 3*b) / 4.0;
// Oscillate is not linear, we just want a really rough approximation
Assert::IsTrue(Math::Similar(expected, result, 0.4));
}
}
// Tests that the result is (3a+b)/4, when counter satisfies 2(int)x+1 + 0.75
TEST_METHOD(Returns_a3b_mean_for_intx_plus_0p75_counterbase_uneven)
{
// Test 1000 random floats
for (std::size_t i = 0; i < 1000; i++)
{
// Setup
const double a = Random::RandomRange(-1, 1);
const double b = Random::RandomRange(-1, 1);
const int uneven = Random::RandomIntRange(-1000, 1000) | 1;
// Exercise
const double result = Math::Oscillate(a, b, uneven + 0.75, 1);
// Verify
const double expected = (3*a + b) / 4.0;
// Oscillate is not linear, we just want a really rough approximation
Assert::IsTrue(Math::Similar(expected, result, 0.4)); // Oscillate is not linear
}
}
// Tests that doubling the speed will double the frequency
TEST_METHOD(Doubling_Speed_Doubles_Frequency)
{
// Test 1000 random floats
for (std::size_t i = 0; i < 1000; i++)
{
// Setup
const double a = Random::RandomRange(-1000, 1000);
const double b = Random::RandomRange(-1000, 1000);
// Exercise
const double result = Math::Oscillate(a, b, 0.5, 2);
// Verify
const double expected = b;
Assert::IsTrue(Math::Similar(expected, result));
}
return;
}
};
return;
}
// Tests that the result is a, if the counter is 0 or a whole, even integer
TEST_CASE("Returns_a_For_Counter_0", "[Math][Oscillate]")
{
// Test 1000 random floats
for (std::size_t i = 0; i < 1000; i++)
{
// Setup
const double a = Random::RandomRange(-1000, 1000);
const double b = Random::RandomRange(-1000, 1000);
const int even = Random::RandomIntRange(-1000, 1000) & ~1;
// Exercise
const double result = Math::Oscillate(a, b, even, 1);
// Verify
const double expected = a;
INFO(
"a: " << a << '\n'
<< "b: " << b << '\n'
<< "expected: " << expected << '\n'
<< "result: " << result << '\n'
);
REQUIRE(Math::Similar(expected, result));
}
}
// Tests that the result is b, if the counter is a whole, uneven integer
TEST_CASE("Returns_b_For_Uneven_Whole_Counter", "[Math][Oscillate]")
{
// Test 1000 random floats
for (std::size_t i = 0; i < 1000; i++)
{
// Setup
const double a = Random::RandomRange(-1000, 1000);
const double b = Random::RandomRange(-1000, 1000);
const int uneven = Random::RandomIntRange(-1000, 1000) | 1;
// Exercise
const double result = Math::Oscillate(a, b, uneven, 1);
// Verify
const double expected = b;
REQUIRE(Math::Similar(expected, result));
}
}
// Tests that the result is (a+b)/2, when counter satisfies (int)x + 0.5
TEST_CASE("Returns_ab_mean_for_intx_plus_0p5", "[Math][Oscillate]")
{
// Test 1000 random floats
for (std::size_t i = 0; i < 1000; i++)
{
// Setup
const double a = Random::RandomRange(-1000, 1000);
const double b = Random::RandomRange(-1000, 1000);
const int anInt = Random::RandomIntRange(-1000, 1000);
// Exercise
const double result = Math::Oscillate(a, b, anInt + 0.5, 1);
// Verify
const double expected = (a+b) / 2.0;
INFO(
"a: " << a << '\n'
<< "b: " << b << '\n'
<< "expected: " << expected << '\n'
<< "result: " << result << '\n'
<< '\n'
);
REQUIRE(Math::Similar(expected, result));
}
}
// Tests that the result is (3a+b)/4, when counter satisfies 2(int)x + 0.25
TEST_CASE("Returns_3ab_mean_for_intx_plus_0p25_counterbase_even", "[Math][Oscillate]")
{
// Test 1000 random floats
for (std::size_t i = 0; i < 1000; i++)
{
// Setup
const double a = Random::RandomRange(-1, 1);
const double b = Random::RandomRange(-1, 1);
const int even = Random::RandomIntRange(-1000, 1000) & ~1;
// Exercise
const double result = Math::Oscillate(a, b, even + 0.25, 1);
// Verify
const double expected = (3*a + b) / 4.0;
INFO(
"a: " << a << '\n'
<< "b: " << b << '\n'
<< "expected: " << expected << '\n'
<< "result: " << result << '\n'
);
// Oscillate is not linear, we just want a really rough approximation
REQUIRE(Math::Similar(expected, result, 0.4));
}
}
// Tests that the result is (a+3b)/4, when counter satisfies 2(int)x + 0.75
TEST_CASE("Returns_a3b_mean_for_intx_plus_0p75_counterbase_even", "[Math][Oscillate]")
{
// Test 1000 random floats
for (std::size_t i = 0; i < 1000; i++)
{
// Setup
const double a = Random::RandomRange(-1, 1);
const double b = Random::RandomRange(-1, 1);
const int even = Random::RandomIntRange(-1000, 1000) & ~1;
// Exercise
const double result = Math::Oscillate(a, b, even + 0.75, 1);
// Verify
const double expected = (a + 3*b) / 4.0;
// Oscillate is not linear, we just want a really rough approximation
REQUIRE(Math::Similar(expected, result, 0.4)); // Oscillate is not linear
}
}
// Tests that the result is (a+3b)/4, when counter satisfies 2(int)x+1 + 0.25
TEST_CASE("Returns_3ab_mean_for_intx_plus_0p25_counterbase_uneven", "[Math][Oscillate]")
{
// Test 1000 random floats
for (std::size_t i = 0; i < 1000; i++)
{
// Setup
const double a = Random::RandomRange(-1, 1);
const double b = Random::RandomRange(-1, 1);
const int uneven = Random::RandomIntRange(-1000, 1000) | 1;
// Exercise
const double result = Math::Oscillate(a, b, uneven + 0.25, 1);
// Verify
const double expected = (a + 3*b) / 4.0;
// Oscillate is not linear, we just want a really rough approximation
REQUIRE(Math::Similar(expected, result, 0.4));
}
}
// Tests that the result is (3a+b)/4, when counter satisfies 2(int)x+1 + 0.75
TEST_CASE("Returns_a3b_mean_for_intx_plus_0p75_counterbase_uneven", "[Math][Oscillate]")
{
// Test 1000 random floats
for (std::size_t i = 0; i < 1000; i++)
{
// Setup
const double a = Random::RandomRange(-1, 1);
const double b = Random::RandomRange(-1, 1);
const int uneven = Random::RandomIntRange(-1000, 1000) | 1;
// Exercise
const double result = Math::Oscillate(a, b, uneven + 0.75, 1);
// Verify
const double expected = (3*a + b) / 4.0;
// Oscillate is not linear, we just want a really rough approximation
REQUIRE(Math::Similar(expected, result, 0.4)); // Oscillate is not linear
}
}
// Tests that doubling the speed will double the frequency
TEST_CASE("Doubling_Speed_Doubles_Frequency", "[Math][Oscillate]")
{
// Test 1000 random floats
for (std::size_t i = 0; i < 1000; i++)
{
// Setup
const double a = Random::RandomRange(-1000, 1000);
const double b = Random::RandomRange(-1000, 1000);
// Exercise
const double result = Math::Oscillate(a, b, 0.5, 2);
// Verify
const double expected = b;
REQUIRE(Math::Similar(expected, result));
}
return;
}