Eule/Test/Vector3.cpp

1554 lines
39 KiB
C++
Raw Normal View History

2021-11-15 11:32:27 +01:00
#include "CppUnitTest.h"
#include "../Eule/Vector3.h"
#include "../Eule/Math.h"
#include "../_TestingUtilities/HandyMacros.h"
#include <random>
#include <sstream>
using namespace Microsoft::VisualStudio::CppUnitTestFramework;
using namespace Eule;
namespace Vectors
{
TEST_CLASS(_Vector3)
{
private:
std::mt19937 rng;
public:
// Constructor
_Vector3()
{
rng = std::mt19937((std::random_device())());
return;
}
// Tests if all values are 0 after initialization via default constructor
TEST_METHOD(New_Vector_All_0)
{
Vector3d v3;
Assert::AreEqual(0.0, v3.x);
Assert::AreEqual(0.0, v3.y);
Assert::AreEqual(0.0, v3.z);
return;
}
// Tests if values can be set via the constructor
TEST_METHOD(Can_Set_Values_Constructor)
{
Vector3d v3(69, 32, 16);
Assert::AreEqual(69.0, v3.x);
Assert::AreEqual(32.0, v3.y);
Assert::AreEqual(16.0, v3.z);
return;
}
// Tests if values can be set via letters
TEST_METHOD(Can_Set_Values_Letters)
{
Vector3d v3;
v3.x = 69;
v3.y = 32;
v3.z = 16;
Assert::AreEqual(69.0, v3.x);
Assert::AreEqual(32.0, v3.y);
Assert::AreEqual(16.0, v3.z);
return;
}
// Tests if values can be set via array descriptors
TEST_METHOD(Can_Set_Values_ArrayDescriptor)
{
Vector3d v3;
v3[0] = 69;
v3[1] = 32;
v3[2] = 16;
Assert::AreEqual(69.0, v3.x);
Assert::AreEqual(32.0, v3.y);
Assert::AreEqual(16.0, v3.z);
return;
}
// Tests if values can be set via an initializer list
TEST_METHOD(Can_Set_Values_InitializerList)
{
Vector3d v3 = { 69, 32, 16 };
Assert::AreEqual(69.0, v3.x);
Assert::AreEqual(32.0, v3.y);
Assert::AreEqual(16.0, v3.z);
return;
}
// Tests for vectors copied via the copy constructor to have the same values
TEST_METHOD(Copy_Constructor_Same_Values)
{
Vector3d a(69, 32, 16);
Vector3d b(a);
Assert::AreEqual(a.x, b.x);
Assert::AreEqual(a.y, b.y);
Assert::AreEqual(a.z, b.z);
return;
}
// Tests for vectors copied via the equals operator to have the same values
TEST_METHOD(Operator_Equals_Same_Values)
{
Vector3d a(69, 32, 16);
Vector3d b = a;
Assert::AreEqual(a.x, b.x);
Assert::AreEqual(a.y, b.y);
Assert::AreEqual(a.z, b.z);
return;
}
// Tests for vectors copied via the copy constructor to be modifyable without modifying the original object
TEST_METHOD(Copy_Constructor_Independent)
{
Vector3d a(69, 32, 16);
Vector3d b(a);
b.x = 169;
b.y = 132;
b.z = 116;
Assert::AreEqual(69.0, a.x);
Assert::AreEqual(32.0, a.y);
Assert::AreEqual(16.0, a.z);
Assert::AreEqual(169.0, b.x);
Assert::AreEqual(132.0, b.y);
Assert::AreEqual(116.0, b.z);
return;
}
// Tests for vectors copied via the equals operator to be modifyable without modifying the original object
TEST_METHOD(Operator_Equals_Independent)
{
Vector3d a(69, 32, 16);
Vector3d b = a;
b.x = 169;
b.y = 132;
b.z = 116;
Assert::AreEqual(69.0, a.x);
Assert::AreEqual(32.0, a.y);
Assert::AreEqual(16.0, a.z);
Assert::AreEqual(169.0, b.x);
Assert::AreEqual(132.0, b.y);
Assert::AreEqual(116.0, b.z);
return;
}
// Tests if the dot product between two vectors angled 90 degrees from one another is 0. It should by definition be 0!
// Dot products are commutative, so we'll check both directions.
// This test tests all possible 90 degree setups with 1000x random lengths
TEST_METHOD(DotProduct_90deg)
{
// Test 1000 times
for (std::size_t i = 0; i < 100; i++)
{
// The length of the vectors should not matter. Only the angle should.
// Let's test that!
Vector3d a = Vector3d(1, 0, 0) * (rng() % 6969 + 1.0);
Vector3d b = Vector3d(0, 1, 0) * (rng() % 6969 + 1.0);
std::wstringstream wss;
wss << a << L" DOT " << b << L" = " << a.DotProduct(b) << std::endl;
Assert::AreEqual(0.0, a.DotProduct(b), wss.str().c_str());
Assert::AreEqual(0.0, b.DotProduct(a), wss.str().c_str());
wss.str(L"");
a = Vector3d(0, 1, 0) * (rng() % 6969 + 1.0);
b = Vector3d(1, 0, 0) * (rng() % 6969 + 1.0);
wss << a << L" DOT " << b << L" = " << a.DotProduct(b) << std::endl;
Assert::AreEqual(0.0, a.DotProduct(b), wss.str().c_str());
Assert::AreEqual(0.0, b.DotProduct(a), wss.str().c_str());
wss.str(L"");
a = Vector3d(0, 1, 0) * (rng() % 6969 + 1.0);
b = Vector3d(0, 0, 1) * (rng() % 6969 + 1.0);
wss << a << L" DOT " << b << L" = " << a.DotProduct(b) << std::endl;
Assert::AreEqual(0.0, a.DotProduct(b), wss.str().c_str());
Assert::AreEqual(0.0, b.DotProduct(a), wss.str().c_str());
wss.str(L"");
a = Vector3d(0, 0, 1) * (rng() % 6969 + 1.0);
b = Vector3d(0, 1, 0) * (rng() % 6969 + 1.0);
wss << a << L" DOT " << b << L" = " << a.DotProduct(b) << std::endl;
Assert::AreEqual(0.0, a.DotProduct(b), wss.str().c_str());
Assert::AreEqual(0.0, b.DotProduct(a), wss.str().c_str());
wss.str(L"");
a = Vector3d(1, 0, 0) * (rng() % 6969 + 1.0);
b = Vector3d(0, 0, 1) * (rng() % 6969 + 1.0);
wss << a << L" DOT " << b << L" = " << a.DotProduct(b) << std::endl;
Assert::AreEqual(0.0, a.DotProduct(b), wss.str().c_str());
Assert::AreEqual(0.0, b.DotProduct(a), wss.str().c_str());
wss.str(L"");
a = Vector3d(0, 0, 1) * (rng() % 6969 + 1.0);
b = Vector3d(1, 0, 0) * (rng() % 6969 + 1.0);
wss << a << L" DOT " << b << L" = " << a.DotProduct(b) << std::endl;
Assert::AreEqual(0.0, a.DotProduct(b), wss.str().c_str());
Assert::AreEqual(0.0, b.DotProduct(a), wss.str().c_str());
}
return;
}
// Test if the dot product is positive for two vectors angled less than 90 degrees from another
// Dot products are commutative, so we'll check both directions.
TEST_METHOD(DotProduct_LessThan90deg)
{
// Test 1000 times
for (std::size_t i = 0; i < 1000; i++)
{
// The length of the vectors should not matter. Only the angle should.
// Let's test that!
Vector3d a = Vector3d(1, 1.0 / (rng() % 100), 69) * (rng() % 6969 + 1.0); // Don't allow the scalar to become 0
Vector3d b = Vector3d(1.0 / (rng() % 100), 1, 69) * (rng() % 6969 + 1.0);
std::wstringstream wss;
wss << a << L" DOT " << b << L" = " << a.DotProduct(b) << std::endl;
Assert::IsTrue(a.DotProduct(b) > 0, wss.str().c_str());
Assert::IsTrue(b.DotProduct(a) > 0, wss.str().c_str());
}
return;
}
// Test if the dot product is negative for two vectors angled greater than 90 degrees from another
// Dot products are commutative, so we'll check both directions.
TEST_METHOD(DotProduct_GreaterThan90deg)
{
// Test 1000 times
for (std::size_t i = 0; i < 1000; i++)
{
// The length of the vectors should not matter. Only the angle should.
// Let's test that!
Vector3d a = Vector3d(1, -1.0 / (rng() % 100), 69) * (rng() % 6969 + 1.0); // Don't allow the scalar to become 0
Vector3d b = Vector3d(-1.0 / (rng() % 100), 1, -69) * (rng() % 6969 + 1.0);
std::wstringstream wss;
wss << a << L" DOT " << b << L" = " << a.DotProduct(b) << std::endl;
Assert::IsTrue(a.DotProduct(b) < 0, wss.str().c_str());
Assert::IsTrue(b.DotProduct(a) < 0, wss.str().c_str());
}
return;
}
// Tests that the dot product is correct for a known value
TEST_METHOD(DotProduct_Oracle)
{
// Setup
Vector3d a(-99, 199, -32);
Vector3d b(18, -1, -21);
// Exercise
const double dot = a.DotProduct(b);
// Verify
Assert::AreEqual(-1309.0, dot);
return;
}
// Quick and dirty check if the useless int-method is working
TEST_METHOD(DotProduct_Dirty_Int)
{
Vector3i a;
Vector3i b;
std::wstringstream wss;
// 90 deg
a = { 0, 10, 0 };
b = { 10, 0, 0 };
wss.str(L"");
wss << a << L" DOT " << b << L" = " << a.DotProduct(b) << std::endl;
Assert::AreEqual(0.0, a.DotProduct(b), wss.str().c_str());
Assert::AreEqual(0.0, b.DotProduct(a), wss.str().c_str());
// < 90 deg
a = { 7, 10, 10 };
b = { 10, 1, 10 };
wss.str(L"");
wss << a << L" DOT " << b << L" = " << a.DotProduct(b) << std::endl;
Assert::IsTrue(a.DotProduct(b) > 0.0, wss.str().c_str());
Assert::IsTrue(b.DotProduct(a) > 0.0, wss.str().c_str());
// > 90 deg
a = { -3, 10, -10 };
b = { 10, -4, 10 };
wss.str(L"");
wss << a << L" DOT " << b << L" = " << a.DotProduct(b) << std::endl;
Assert::IsTrue(a.DotProduct(b) < 0.0, wss.str().c_str());
Assert::IsTrue(b.DotProduct(a) < 0.0, wss.str().c_str());
return;
}
// Tests for the cross product between the same vector being 0
TEST_METHOD(CrossProduct_Same_Vector_Is_0)
{
// Test 1000 times
for (std::size_t i = 0; i < 1000; i++)
{
double x = LARGE_RAND_DOUBLE;
double y = LARGE_RAND_DOUBLE;
double z = LARGE_RAND_DOUBLE;
Vector3d a(x, y, z);
std::wstringstream wss;
wss << a << L" CROSS " << a << L" = " << a.CrossProduct(a) << std::endl;
Assert::IsTrue(Vector3d(0,0,0) == a.CrossProduct(a), wss.str().c_str());
}
return;
}
// Tests for the cross product between opposite vectors being 0
TEST_METHOD(CrossProduct_Opposite_Vector_Is_0)
{
// Test 1000 times
for (std::size_t i = 0; i < 1000; i++)
{
double x = LARGE_RAND_DOUBLE;
double y = LARGE_RAND_DOUBLE;
double z = LARGE_RAND_DOUBLE;
Vector3d a(x, y, z);
Vector3d b(-x, -y, -z);
std::wstringstream wss;
wss << a << L" CROSS " << b << L" = " << a.CrossProduct(b) << std::endl;
Assert::IsTrue(Vector3d(0, 0, 0) == a.CrossProduct(b), wss.str().c_str());
}
return;
}
// Tests for known values
TEST_METHOD(CrossProduct_KnownValues)
{
Vector3d a;
Vector3d b;
std::wstringstream wss;
wss.str(L"");
a = Vector3d(1, 0, 0);
b = Vector3d(0, 0, 1);
wss << a << L" CROSS " << b << L" = " << a.CrossProduct(b) << std::endl;
Assert::IsTrue(Vector3d(0, -1, 0) == a.CrossProduct(b), wss.str().c_str());
wss.str(L"");
a = Vector3d(-1, 0, 0);
b = Vector3d(0, 0, -1);
wss << a << L" CROSS " << b << L" = " << a.CrossProduct(b) << std::endl;
Assert::IsTrue(Vector3d(0, -1, 0) == a.CrossProduct(b), wss.str().c_str());
wss.str(L"");
a = Vector3d(1, 0, 0);
b = Vector3d(0, 0, -1);
wss << a << L" CROSS " << b << L" = " << a.CrossProduct(b) << std::endl;
Assert::IsTrue(Vector3d(0, 1, 0) == a.CrossProduct(b), wss.str().c_str());
wss.str(L"");
a = Vector3d(1, 0, 0);
b = Vector3d(0, 1, 0);
wss << a << L" CROSS " << b << L" = " << a.CrossProduct(b) << std::endl;
Assert::IsTrue(Vector3d(0, 0, 1) == a.CrossProduct(b), wss.str().c_str());
wss.str(L"");
a = Vector3d(1, 0, 0);
b = Vector3d(1, 0, 1);
wss << a << L" CROSS " << b << L" = " << a.CrossProduct(b) << std::endl;
Assert::IsTrue(Vector3d(0, -1, 0) == a.CrossProduct(b), wss.str().c_str());
wss.str(L"");
a = Vector3d(1, 0, 0);
b = Vector3d(1, 1, 1);
wss << a << L" CROSS " << b << L" = " << a.CrossProduct(b) << std::endl;
Assert::IsTrue(Vector3d(0, -1, 1) == a.CrossProduct(b), wss.str().c_str());
wss.str(L"");
a = Vector3d(3, -1, -3);
b = Vector3d(-1, 1, 3);
wss << a << L" CROSS " << b << L" = " << a.CrossProduct(b) << std::endl;
Assert::IsTrue(Vector3d(0, -6, 2) == a.CrossProduct(b), wss.str().c_str());
return;
}
// Tests for known values, but with int vectors
TEST_METHOD(CrossProduct_KnownValues_Int)
{
Vector3i a;
Vector3i b;
std::wstringstream wss;
wss.str(L"");
a = Vector3i(1, 0, 0);
b = Vector3i(0, 0, 1);
wss << a << L" CROSS " << b << L" = " << a.CrossProduct(b) << std::endl;
Assert::IsTrue(Vector3d(0, -1, 0) == a.CrossProduct(b), wss.str().c_str());
wss.str(L"");
a = Vector3i(-1, 0, 0);
b = Vector3i(0, 0, -1);
wss << a << L" CROSS " << b << L" = " << a.CrossProduct(b) << std::endl;
Assert::IsTrue(Vector3d(0, -1, 0) == a.CrossProduct(b), wss.str().c_str());
wss.str(L"");
a = Vector3i(1, 0, 0);
b = Vector3i(0, 0, -1);
wss << a << L" CROSS " << b << L" = " << a.CrossProduct(b) << std::endl;
Assert::IsTrue(Vector3d(0, 1, 0) == a.CrossProduct(b), wss.str().c_str());
wss.str(L"");
a = Vector3i(1, 0, 0);
b = Vector3i(0, 1, 0);
wss << a << L" CROSS " << b << L" = " << a.CrossProduct(b) << std::endl;
Assert::IsTrue(Vector3d(0, 0, 1) == a.CrossProduct(b), wss.str().c_str());
wss.str(L"");
a = Vector3i(1, 0, 0);
b = Vector3i(1, 0, 1);
wss << a << L" CROSS " << b << L" = " << a.CrossProduct(b) << std::endl;
Assert::IsTrue(Vector3d(0, -1, 0) == a.CrossProduct(b), wss.str().c_str());
wss.str(L"");
a = Vector3i(1, 0, 0);
b = Vector3i(1, 1, 1);
wss << a << L" CROSS " << b << L" = " << a.CrossProduct(b) << std::endl;
Assert::IsTrue(Vector3d(0, -1, 1) == a.CrossProduct(b), wss.str().c_str());
wss.str(L"");
a = Vector3i(3, -1, -3);
b = Vector3i(-1, 1, 3);
wss << a << L" CROSS " << b << L" = " << a.CrossProduct(b) << std::endl;
Assert::IsTrue(Vector3d(0, -6, 2) == a.CrossProduct(b), wss.str().c_str());
return;
}
// Tests the SqrMagnitude method to work as expected with random numbers
TEST_METHOD(SqrMagnitude)
{
// Test 1000 times
for (std::size_t i = 0; i < 1000; i++)
{
double x = (double)(rng() % 1000) - 500.0; // Too large numbers would get unaccurate decimals when using intrinsics.
double y = (double)(rng() % 1000) - 500.0;
double z = (double)(rng() % 1000) - 500.0;
double expected = x*x + y*y + z*z;
Assert::IsTrue(Math::Similar(expected, Vector3d(x, y, z).SqrMagnitude()));
}
return;
}
// Tests the SqrMagnitude method to work as expected with random numbers, but with an int-vector
TEST_METHOD(SqrMagnitude_Int)
{
// Test 1000 times
for (std::size_t i = 0; i < 1000; i++)
{
int x = LARGE_RAND_INT;
int y = LARGE_RAND_INT;
int z = LARGE_RAND_INT;
int expected = x*x + y*y + z*z;
Assert::AreEqual((double)expected, Vector3i(x, y, z).SqrMagnitude());
}
return;
}
// Tests for the length of the vector (0,0,0) being 0
TEST_METHOD(Magnitude_Is_0_On_Vec0)
{
Assert::AreEqual(0.0, Vector3d(0, 0, 0).Magnitude());
return;
}
// Tests for a vector of a known length to actually return that
TEST_METHOD(Magnitude_One_Axis_X)
{
// Test 1000 times
for (std::size_t i = 0; i < 1000; i++)
{
double x = (double)(rng() % 1000) - 500.0; // Too large numbers would get unaccurate decimals when using intrinsics.
Vector3d vec(x, 0, 0);
std::wstringstream wss;
wss << std::endl << std::setprecision(20)
<< "Actual: " << vec.Magnitude() << std::endl
<< "Expected: " << x << std::endl;
Assert::IsTrue(Math::Similar(abs(x), vec.Magnitude()), wss.str().c_str());
}
return;
}
// Tests for a vector of a known length to actually return that
TEST_METHOD(Magnitude_One_Axis_Y)
{
// Test 1000 times
for (std::size_t i = 0; i < 1000; i++)
{
double y = (double)(rng() % 1000) - 500.0; // Too large numbers would get unaccurate decimals when using intrinsics.
Vector3d vec(0, y, 0);
std::wstringstream wss;
wss << std::endl << std::setprecision(20)
<< "Actual: " << vec.Magnitude() << std::endl
<< "Expected: " << y << std::endl;
Assert::IsTrue(Math::Similar(abs(y), vec.Magnitude()), wss.str().c_str());
}
return;
}
// Tests for a vector of a known length to actually return that
TEST_METHOD(Magnitude_One_Axis_Z)
{
// Test 1000 times
for (std::size_t i = 0; i < 1000; i++)
{
double z = (double)(rng() % 1000) - 500.0; // Too large numbers would get unaccurate decimals when using intrinsics.
Vector3d vec(0, 0, z);
std::wstringstream wss;
wss << std::endl << std::setprecision(20)
<< "Actual: " << vec.Magnitude() << std::endl
<< "Expected: " << z << std::endl;
Assert::IsTrue(Math::Similar(abs(z), vec.Magnitude()), wss.str().c_str());
}
return;
}
// Tests for a known result
TEST_METHOD(Magnitude)
{
// Ya'll got more of 'dem digits?
Assert::AreEqual(426.14786166306174663986894302070140838623046875, Vector3d(69, -420, 21).Magnitude());
return;
}
// Tests for expected lerp result 0.00
TEST_METHOD(Lerp_000)
{
Vector3d a(100, 1000, 10);
Vector3d b(200, 4000, 100);
Vector3d res = a.Lerp(b, 0.00);
std::wstringstream wss;
wss << res;
Assert::IsTrue(a == res, wss.str().c_str());
return;
}
// Tests for expected lerp result 0.25
TEST_METHOD(Lerp_025)
{
Vector3d a(100, 1000, 10);
Vector3d b(200, 4000, 100);
Vector3d res = a.Lerp(b, 0.25);
std::wstringstream wss;
wss << res;
Assert::IsTrue(Vector3d(125, 1750, 32.5) == res, wss.str().c_str());
return;
}
// Tests for expected lerp result 0.50
TEST_METHOD(Lerp_050)
{
Vector3d a(100, 1000, 10);
Vector3d b(200, 4000, 100);
Vector3d res = a.Lerp(b, 0.50);
std::wstringstream wss;
wss << res;
Assert::IsTrue(Vector3d(150, 2500, 55) == res, wss.str().c_str());
return;
}
// Tests for expected lerp result 0.75
TEST_METHOD(Lerp_075)
{
Vector3d a(100, 1000, 10);
Vector3d b(200, 4000, 100);
Vector3d res = a.Lerp(b, 0.75);
std::wstringstream wss;
wss << res;
Assert::IsTrue(Vector3d(175, 3250, 77.5) == res, wss.str().c_str());
return;
}
// Tests for expected lerp result 1.00
TEST_METHOD(Lerp_100)
{
Vector3d a(100, 1000, 10);
Vector3d b(200, 4000, 100);
Vector3d res = a.Lerp(b, 1.00);
std::wstringstream wss;
wss << res;
Assert::IsTrue(b == res, wss.str().c_str());
return;
}
// Tests lerpself
TEST_METHOD(LerpSelf)
{
Vector3d a(100, 1000, 10);
Vector3d b(200, 4000, 100);
a.LerpSelf(b, 0.75);
std::wstringstream wss;
wss << a;
Assert::IsTrue(Vector3d(175, 3250, 77.5) == a, wss.str().c_str());
return;
}
// Tests if an input vector of length 0 is handled correctly by the normalize method
TEST_METHOD(Normalize_Length_Before_Is_0)
{
Vector3d vec(0, 0, 0);
vec.NormalizeSelf();
Assert::AreEqual(0.0, vec.Magnitude());
return;
}
// Tests for any normalized vector to be of length 1
TEST_METHOD(Normalize_Length_Is_1)
{
// Test 1000 times
for (std::size_t i = 0; i < 1000; i++)
{
double x = LARGE_RAND_DOUBLE;
double y = LARGE_RAND_DOUBLE;
double z = LARGE_RAND_DOUBLE;
Vector3d vec(x, y, z);
// Prevent a vector of length 0 going in
if (vec.SqrMagnitude() == 0)
vec.x++;
std::wstringstream wss;
wss << vec;
Assert::IsTrue(Math::Similar(vec.Normalize().Magnitude(), 1.0), wss.str().c_str()); // Account for floating point inaccuracy
}
return;
}
// Tests the normalize method with known values
TEST_METHOD(Normalize_Oracle)
{
// Setup
Vector3d v(3.2, -5.3, 9.88);
// Exercise
v.NormalizeSelf();
// Verify
Vector3d expected(0.27445384355, -0.45456417839, 0.84737624198);
Assert::IsTrue(v.Similar(expected));
}
// Tests for a normalized vector to still point in the exact same direction
TEST_METHOD(Normalize_Direction_Stays_Unaffected)
{
// Test 1000 times
for (std::size_t i = 0; i < 1000; i++)
{
double x = LARGE_RAND_DOUBLE;
double y = LARGE_RAND_DOUBLE;
double z = LARGE_RAND_DOUBLE;
if (x == 0) x++;
if (y == 0) y++;
if (z == 0) z++;
Vector3d vec(x, y, z);
Vector3d vec_n(x, y, z);
vec_n = vec_n.Normalize();
std::wstringstream wss;
wss << vec << L" | " << vec_n;
// Both vectors should still point in the same direction!
Assert::IsTrue(
(vec.DotProduct(vec_n) > 0) && // Roughly same direction
(Math::Similar(vec_n.CrossProduct(vec).Magnitude(), 0.0)), // Both vectors align
wss.str().c_str());
}
return;
}
// Kinda dumb method, but ok lol
// DON'T NORMALIZE INT-VECTORS WHAT IS WRONG WITH YOU
TEST_METHOD(Normalized_Int_Vector_Is_0)
{
// Test 1000 times
for (std::size_t i = 0; i < 1000; i++)
{
int x = LARGE_RAND_INT;
int y = LARGE_RAND_INT;
int z = LARGE_RAND_INT;
Vector3i vec(x, y, z);
vec.NormalizeSelf();
std::wstringstream wss;
wss << vec;
Assert::AreEqual(0.0, vec.Magnitude(), wss.str().c_str());
}
}
// Tests that NormalizeSelf() results in the same as Normalize()
TEST_METHOD(NormalizeSelf_IsSameAs_Normalize)
{
// Run test 1000 times
for (std::size_t i = 0; i < 1000; i++)
{
Vector3d vec(LARGE_RAND_DOUBLE, LARGE_RAND_DOUBLE, LARGE_RAND_DOUBLE);
Vector3d nVec = vec.Normalize();
vec.NormalizeSelf();
Assert::IsTrue(nVec == vec);
}
return;
}
// Tests for the VectorScale() method to work
TEST_METHOD(VectorScale)
{
// Run test 1000 times
for (std::size_t i = 0; i < 1000; i++)
{
const double ax = LARGE_RAND_DOUBLE;
const double ay = LARGE_RAND_DOUBLE;
const double az = LARGE_RAND_DOUBLE;
const double bx = LARGE_RAND_DOUBLE;
const double by = LARGE_RAND_DOUBLE;
const double bz = LARGE_RAND_DOUBLE;
Vector3d a(ax, ay, az);
Vector3d b(bx, by, bz);
Vector3d target(
ax * bx,
ay * by,
az * bz
);
Assert::IsTrue(a.VectorScale(b) == target);
}
return;
}
// Tests for operator- (unary) to work
TEST_METHOD(Operator_Unary_Negative)
{
Vector3d v(29, -5, 35);
Assert::IsTrue(Vector3d(-29, 5, -35) == -v);
return;
}
// Tests for operator+ to work as expected
TEST_METHOD(Operator_Add)
{
// Test 1000 times
for (std::size_t i = 0; i < 1000; i++)
{
double ax = LARGE_RAND_DOUBLE;
double ay = LARGE_RAND_DOUBLE;
double az = LARGE_RAND_DOUBLE;
double bx = LARGE_RAND_DOUBLE;
double by = LARGE_RAND_DOUBLE;
double bz = LARGE_RAND_DOUBLE;
Vector3d a(ax, ay, az);
Vector3d b(bx, by, bz);
Assert::IsTrue(Vector3d(ax + bx, ay + by, az + bz) == a + b);
}
return;
}
// Tests for operator+= to work as expected
TEST_METHOD(Operator_Add_Equals)
{
// Test 1000 times
for (std::size_t i = 0; i < 1000; i++)
{
double ax = LARGE_RAND_DOUBLE;
double ay = LARGE_RAND_DOUBLE;
double az = LARGE_RAND_DOUBLE;
double bx = LARGE_RAND_DOUBLE;
double by = LARGE_RAND_DOUBLE;
double bz = LARGE_RAND_DOUBLE;
Vector3d a(ax, ay, az);
a += Vector3d(bx, by, bz);
Assert::IsTrue(Vector3d(ax + bx, ay + by, az + bz) == a);
}
return;
}
// Tests for operator- to work as expected
TEST_METHOD(Operator_Sub)
{
// Test 1000 times
for (std::size_t i = 0; i < 1000; i++)
{
double ax = LARGE_RAND_DOUBLE;
double ay = LARGE_RAND_DOUBLE;
double az = LARGE_RAND_DOUBLE;
double bx = LARGE_RAND_DOUBLE;
double by = LARGE_RAND_DOUBLE;
double bz = LARGE_RAND_DOUBLE;
Vector3d a(ax, ay, az);
Vector3d b(bx, by, bz);
Assert::IsTrue(Vector3d(ax - bx, ay - by, az - bz) == a - b);
}
return;
}
// Tests for operator-= to work as expected
TEST_METHOD(Operator_Sub_Equals)
{
// Test 1000 times
for (std::size_t i = 0; i < 1000; i++)
{
double ax = LARGE_RAND_DOUBLE;
double ay = LARGE_RAND_DOUBLE;
double az = LARGE_RAND_DOUBLE;
double bx = LARGE_RAND_DOUBLE;
double by = LARGE_RAND_DOUBLE;
double bz = LARGE_RAND_DOUBLE;
Vector3d a(ax, ay, az);
a -= Vector3d(bx, by, bz);
Assert::IsTrue(Vector3d(ax - bx, ay - by, az - bz) == a);
}
return;
}
// Tests for operator* to work as expected
TEST_METHOD(Operator_Mult)
{
// Test 1000 times
for (std::size_t i = 0; i < 1000; i++)
{
double x = LARGE_RAND_DOUBLE;
double y = LARGE_RAND_DOUBLE;
double z = LARGE_RAND_DOUBLE;
double scalar = LARGE_RAND_DOUBLE;
Vector3d a(x, y, z);
Assert::IsTrue(Vector3d(x * scalar, y * scalar, z * scalar) == a * scalar);
}
return;
}
// Tests for operator*= to work as expected
TEST_METHOD(Operator_Mult_Equals)
{
// Test 1000 times
for (std::size_t i = 0; i < 1000; i++)
{
double x = LARGE_RAND_DOUBLE;
double y = LARGE_RAND_DOUBLE;
double z = LARGE_RAND_DOUBLE;
double scalar = LARGE_RAND_DOUBLE;
Vector3d a(x, y, z);
a *= scalar;
Assert::IsTrue(Vector3d(x * scalar, y * scalar, z * scalar) == a);
}
return;
}
// Tests for operator/ to work as expected
TEST_METHOD(Operator_Div)
{
// Test 1000 times
for (std::size_t i = 0; i < 1000; i++)
{
double x = LARGE_RAND_DOUBLE;
double y = LARGE_RAND_DOUBLE;
double z = LARGE_RAND_DOUBLE;
double scalar = LARGE_RAND_DOUBLE;
Vector3d a(x, y, z);
Assert::IsTrue(Vector3d(x / scalar, y / scalar, z / scalar) == a / scalar);
}
return;
}
// Tests for operator/= to work as expected
TEST_METHOD(Operator_Div_Equals)
{
// Test 1000 times
for (std::size_t i = 0; i < 1000; i++)
{
double x = LARGE_RAND_DOUBLE;
double y = LARGE_RAND_DOUBLE;
double z = LARGE_RAND_DOUBLE;
double scalar = LARGE_RAND_DOUBLE;
Vector3d a(x, y, z);
a /= scalar;
Assert::IsTrue(Vector3d(x / scalar, y / scalar, z / scalar) == a);
}
return;
}
// Tests for operator== to work as expected
TEST_METHOD(Operator_Equals)
{
// Test 1000 times
for (std::size_t i = 0; i < 10000; i++)
{
double ax = (rng() % 10) - 5;
double ay = (rng() % 10) - 5;
double az = (rng() % 10) - 5;
double bx = (rng() % 10) - 5;
double by = (rng() % 10) - 5;
double bz = (rng() % 10) - 5;
Vector3d a(ax, ay, az);
Vector3d b(bx, by, bz);
Assert::IsTrue(
((ax == bx) && (ay == by) && (az == bz)) ==
(a == b)
);
}
return;
}
// Tests for operator!= to work as expected
TEST_METHOD(Operator_Not_Equals)
{
// Test 1000 times
for (std::size_t i = 0; i < 10000; i++)
{
double ax = (rng() % 10) - 5;
double ay = (rng() % 10) - 5;
double az = (rng() % 10) - 5;
double bx = (rng() % 10) - 5;
double by = (rng() % 10) - 5;
double bz = (rng() % 10) - 5;
Vector3d a(ax, ay, az);
Vector3d b(bx, by, bz);
Assert::IsTrue(
((ax != bx) || (ay != by) || (az != bz)) ==
(a != b)
);
}
return;
}
// Tests for matrix multiplication working regarding rotation
TEST_METHOD(MatrixMult_Rotate_Yaw)
{
// Create vector
Vector3d vec(69, 32, 16);
Vector3d originalVec = vec;
// Create 90deg yaw rotation matrix (Y)
Matrix4x4 mat;
mat[0] = { 0, 0, 1, 0 };
mat[1] = { 0, 1, 0, 0 };
mat[2] = { -1, 0, 0, 0 };
// Rotate vector
vec *= mat;
// Did we succeed?
std::wstringstream wss;
wss << L"Rot #1 " << vec;
Assert::IsTrue(Vector3d(16, 32, -69) == vec, wss.str().c_str());
// Rotate again!
vec *= mat;
wss.str(L"");
wss << L"Rot #2 " << vec;
Assert::IsTrue(Vector3d(-69, 32, -16) == vec, wss.str().c_str());
// Rotate again!
vec *= mat;
wss.str(L"");
wss << L"Rot #3 " << vec;
Assert::IsTrue(Vector3d(-16, 32, 69) == vec, wss.str().c_str());
// Rotate by 90 deg a last time, having completed a 360<36> rotation.
vec *= mat;
wss.str(L"");
wss << L"Rot #4 " << vec;
Assert::IsTrue(originalVec == vec, wss.str().c_str());
return;
}
// Tests for matrix multiplication working regarding rotation
TEST_METHOD(MatrixMult_Rotate_Roll)
{
// Create vector
Vector3d vec(69, 32, 16);
Vector3d originalVec = vec;
// Create 90deg roll rotation matrix (Z)
Matrix4x4 mat;
mat[0] = { 0, -1, 0, 0 };
mat[1] = { 1, 0, 0, 0 };
mat[2] = { 0, 0, 1, 0 };
// Rotate vector
vec *= mat;
// Did we succeed?
std::wstringstream wss;
wss << L"Rot #1 " << vec;
Assert::IsTrue(Vector3d(-32, 69, 16) == vec, wss.str().c_str());
// Rotate again!
vec *= mat;
wss.str(L"");
wss << L"Rot #2 " << vec;
Assert::IsTrue(Vector3d(-69, -32, 16) == vec, wss.str().c_str());
// Rotate again!
vec *= mat;
wss.str(L"");
wss << L"Rot #3 " << vec;
Assert::IsTrue(Vector3d(32, -69, 16) == vec, wss.str().c_str());
// Rotate by 90 deg a last time, having completed a 360<36> rotation.
vec *= mat;
wss.str(L"");
wss << L"Rot #4 " << vec;
Assert::IsTrue(originalVec == vec, wss.str().c_str());
return;
}
// Tests for matrix multiplication working regarding rotation
TEST_METHOD(MatrixMult_Rotate_Pitch)
{
// Create vector
Vector3d vec(69, 32, 16);
Vector3d originalVec = vec;
// Create 90deg pitch rotation matrix (X)
Matrix4x4 mat;
mat[0] = { 1, 0, 0, 0 };
mat[1] = { 0, 0, -1, 0 };
mat[2] = { 0, 1, 0, 0 };
// Rotate vector
vec *= mat;
// Did we succeed?
std::wstringstream wss;
wss << L"Rot #1 " << vec;
Assert::IsTrue(Vector3d(69, -16, 32) == vec, wss.str().c_str());
// Rotate again!
vec *= mat;
wss.str(L"");
wss << L"Rot #2 " << vec;
Assert::IsTrue(Vector3d(69, -32, -16) == vec, wss.str().c_str());
// Rotate again!
vec *= mat;
wss.str(L"");
wss << L"Rot #3 " << vec;
Assert::IsTrue(Vector3d(69, 16, -32) == vec, wss.str().c_str());
// Rotate by 90 deg a last time, having completed a 360<36> rotation.
vec *= mat;
wss.str(L"");
wss << L"Rot #4 " << vec;
Assert::IsTrue(originalVec == vec, wss.str().c_str());
return;
}
// Tests if rotating a vector (1,1,1) by (45,45,45) eulers works
TEST_METHOD(MatrixMult_Rotate_Unit_Combined)
{
// Create vector
Vector3d vec(1, 1, 1);
// Create rotation matrix
Matrix4x4 mat;
mat[0] = { 0.5, -0.1465, 0.8535, 0 };
mat[1] = { 0.5, 0.8535, -0.1465, 0 };
mat[2] = { -0.7072, 0.5, 0.5, 0 };
// Rotate vector
vec *= mat;
// Did we succeed?
std::wstringstream wss;
wss << vec;
Assert::IsTrue(
Math::Similar(vec.x, 1.207, 0.001) &&
Math::Similar(vec.y, 1.207, 0.001) &&
Math::Similar(vec.z, 0.2928, 0.001),
wss.str().c_str());
return;
}
// Tests if rotating a vector (69,32,16) by (45,45,45) eulers works
TEST_METHOD(MatrixMult_Rotate_HalfUnit_Combined)
{
// Create vector
Vector3d vec(69, 32, 16);
// Create rotation matrix
Matrix4x4 mat;
mat[0] = { 0.5, -0.1465, 0.8535, 0 };
mat[1] = { 0.5, 0.8535, -0.1465, 0 };
mat[2] = { -0.7072, 0.5, 0.5, 0 };
// Rotate vector
vec *= mat;
// Did we succeed?
std::wstringstream wss;
wss << vec;
Assert::IsTrue(
Math::Similar(vec.x, 43.468, 0.001) &&
Math::Similar(vec.y, 59.468, 0.001) &&
Math::Similar(vec.z, -24.7968, 0.001),
wss.str().c_str());
return;
}
// Tests if rotating a vector (69,32,16) by (45,45,45) eulers works
TEST_METHOD(MatrixMult_Rotate_Combined)
{
// Create vector
Vector3d vec(69, 32, 16);
// Create rotation matrix
Matrix4x4 mat;
mat[0] = { -0.1639, -0.9837, -0.0755, 0 };
mat[1] = { 0.128, -0.097, 0.987, 0 };
mat[2] = { -0.9782, 0.152, 0.1417, 0 };
// Rotate vector
vec *= mat;
// Did we succeed?
std::wstringstream wss;
wss << vec;
Assert::IsTrue(
Math::Similar(vec.x, -43.9955, 0.001) &&
Math::Similar(vec.y, 21.52, 0.001) &&
Math::Similar(vec.z, -60.3646, 0.001),
wss.str().c_str());
return;
}
// Tests if matrix scaling works ( x axis only )
TEST_METHOD(MatrixMult_Scale_X)
{
// Create vector
Vector3d vec(5, 6, 7);
// Create scaling matrix
Matrix4x4 mat;
mat[0] = { 3, 0, 0, 0 };
mat[1] = { 0, 1, 0, 0 };
mat[2] = { 0, 0, 1, 0 };
// Scale vector
vec *= mat;
// Did we succeed?
std::wstringstream wss;
wss << vec;
Assert::IsTrue(Vector3d(15, 6, 7) == vec, wss.str().c_str());
return;
}
// Tests if matrix scaling works ( y axis only )
TEST_METHOD(MatrixMult_Scale_Y)
{
// Create vector
Vector3d vec(5, 6, 7);
// Create scaling matrix
Matrix4x4 mat;
mat[0] = { 1, 0, 0, 0 };
mat[1] = { 0, 3, 0, 0 };
mat[2] = { 0, 0, 1, 0 };
// Scale vector
vec *= mat;
// Did we succeed?
std::wstringstream wss;
wss << vec;
Assert::IsTrue(Vector3d(5, 18, 7) == vec, wss.str().c_str());
return;
}
// Tests if matrix scaling works ( z axis only )
TEST_METHOD(MatrixMult_Scale_Z)
{
// Create vector
Vector3d vec(5, 6, 7);
// Create scaling matrix
Matrix4x4 mat;
mat[0] = { 1, 0, 0, 0 };
mat[1] = { 0, 1, 0, 0 };
mat[2] = { 0, 0, 3, 0 };
// Scale vector
vec *= mat;
// Did we succeed?
std::wstringstream wss;
wss << vec;
Assert::IsTrue(Vector3d(5, 6, 21) == vec, wss.str().c_str());
return;
}
// Tests if matrix scaling works ( all axes )
TEST_METHOD(MatrixMult_Scale_Combined)
{
// Create vector
Vector3d vec(5, 6, 7);
// Create scaling matrix
Matrix4x4 mat;
mat[0] = { 4, 0, 0, 0 };
mat[1] = { 0, 5, 0, 0 };
mat[2] = { 0, 0, 8, 0 };
// Scale vector
vec *= mat;
// Did we succeed?
std::wstringstream wss;
wss << vec;
Assert::IsTrue(Vector3d(20, 30, 56) == vec, wss.str().c_str());
return;
}
// Tests if translation via matrix multiplication works
TEST_METHOD(MatrixMult_Translation)
{
// Create vector
Vector3d vec(5, 6, 7);
// Create scaling matrix
Matrix4x4 mat;
mat[0] = { 1, 0, 0, 155 };
mat[1] = { 0, 1, 0, -23 };
mat[2] = { 0, 0, 1, 333 };
// Translate vector
vec *= mat;
// Did we succeed?
std::wstringstream wss;
wss << vec;
Assert::IsTrue(Vector3d(160, -17, 340) == vec, wss.str().c_str());
return;
}
// Tests the multiplication operator (*) with a simple matrix. All other tests used the * operator (without the '=')
TEST_METHOD(MatrixMult_Not_Using_MultEqualsOperator)
{
// Create vector
Vector3d vec(5.1, 6.4, 7.99);
// Create scaling and translation matrix
Matrix4x4 mat;
mat[0] = { 3.8, 0, 0, -5.1 };
mat[1] = { 0, -1.5, 0, 15.2 };
mat[2] = { 0, 0, 3.01, 19.9 };
// Transform vector
vec = vec * mat;
// Did we succeed?
Vector3d expected(
5.1 * 3.8 - 5.1,
6.4 * -1.5 + 15.2,
7.99 * 3.01 + 19.9
);
std::wstringstream wss;
wss << std::endl;
wss << "Expected: " << expected << std::endl;
wss << "Actual: " << vec;
Assert::IsTrue(expected == vec, wss.str().c_str());
return;
}
// A simple matrix multiplication tested on an int vector
TEST_METHOD(MatrixMult_Dirty_Int_Check)
{
// Create vector
Vector3i vec(5, 6, 7);
// Create scaling and translation matrix
Matrix4x4 mat;
mat[0] = { 3, 0, 0, -5 };
mat[1] = { 0, -1, 0, 15 };
mat[2] = { 0, 0, 3, 20 };
// Transform vector
vec *= mat;
// Did we succeed?
std::wstringstream wss;
wss << vec;
Assert::IsTrue(Vector3i(
5*3 + -5,
6*-1 + 15,
7*3 + 20
) == vec, wss.str().c_str());
return;
}
// Tests the multiplication operator (*) with a simple matrix. All other tests used the * operator (without the '=')
TEST_METHOD(MatrixMult_Dirty_Int_Check_Not_Using_MultEqualsOperator)
{
// Create vector
Vector3i vec(5, 6, 7);
// Create scaling and translation matrix
Matrix4x4 mat;
mat[0] = { 3, 0, 0, -5 };
mat[1] = { 0, -1, 0, 15 };
mat[2] = { 0, 0, 3, 20 };
// Scale vector
vec = vec * mat;
// Did we succeed?
std::wstringstream wss;
wss << vec;
Assert::IsTrue(Vector3i(
5 * 3 + -5,
6 * -1 + 15,
7 * 3 + 20
) == vec, wss.str().c_str());
return;
}
//This tests the multiplication equals operator (*=) procedurally
TEST_METHOD(MatrixMult_Equals_Procedural)
{
// Test 1000 times
for (std::size_t i = 0; i < 1000; i++)
{
// Generate parameters
double initialX = LARGE_RAND_DOUBLE;
double initialY = LARGE_RAND_DOUBLE;
double initialZ = LARGE_RAND_DOUBLE;
double scaleX = LARGE_RAND_DOUBLE;
double scaleY = LARGE_RAND_DOUBLE;
double scaleZ = LARGE_RAND_DOUBLE;
double transX = LARGE_RAND_DOUBLE;
double transY = LARGE_RAND_DOUBLE;
double transZ = LARGE_RAND_DOUBLE;
// Create vector
Vector3d vec(initialX, initialY, initialZ);
// Create matrix
Matrix4x4 mat;
mat[0] = { scaleX, 0, 0, transX };
mat[1] = { 0, scaleY, 0, transY };
mat[2] = { 0, 0, scaleZ, transZ };
mat[3] = { 0, 0, 0, 0 };
// Create expected vector
Vector3d expected(
initialX * scaleX + transX,
initialY * scaleY + transY,
initialZ * scaleZ + transZ
);
// Transform vector
vec *= mat;
// Compare
Assert::IsTrue(vec == expected);
}
return;
}
//This tests the multiplication operator (*) procedurally
TEST_METHOD(MatrixMult_Procedural)
{
// Test 1000 times
for (std::size_t i = 0; i < 1000; i++)
{
// Generate parameters
double initialX = LARGE_RAND_DOUBLE;
double initialY = LARGE_RAND_DOUBLE;
double initialZ = LARGE_RAND_DOUBLE;
double scaleX = LARGE_RAND_DOUBLE;
double scaleY = LARGE_RAND_DOUBLE;
double scaleZ = LARGE_RAND_DOUBLE;
double transX = LARGE_RAND_DOUBLE;
double transY = LARGE_RAND_DOUBLE;
double transZ = LARGE_RAND_DOUBLE;
// Create vector
Vector3d vec(initialX, initialY, initialZ);
// Create matrix
Matrix4x4 mat;
mat[0] = { scaleX, 0, 0, transX };
mat[1] = { 0, scaleY, 0, transY };
mat[2] = { 0, 0, scaleZ, transZ };
mat[3] = { 0, 0, 0, 0 };
// Create expected vector
Vector3d expected(
initialX * scaleX + transX,
initialY * scaleY + transY,
initialZ * scaleZ + transZ
);
// Transform vector
vec = vec * mat;
// Compare
Assert::IsTrue(vec == expected);
}
return;
}
// Tests loose comparison via Vector3d::Similar -> true
TEST_METHOD(Similar_True)
{
Assert::IsTrue(
Vector3d(0.00000000000000000000001, -6.6666666666666666666666666666, 9.9999999999999999999999999999).Similar(
Vector3d(0, -6.666666667, 10)
));
return;
}
// Tests loose comparison via Vector3d::Similar -> false
TEST_METHOD(Similar_False)
{
Assert::IsFalse(
Vector3d(0.00000000000000000000001, -6.6666666666666666666666666666, 9.9999999999999999999999999999).Similar(
Vector3d(0.1, -6.7, 10.1)
));
return;
}
// Tests that the move constructor works
TEST_METHOD(Move_Constructor)
{
Vector3d a(1,2,3);
Vector3d b(std::move(a));
Assert::AreEqual(b.x, 1.0);
Assert::AreEqual(b.y, 2.0);
Assert::AreEqual(b.z, 3.0);
return;
}
// Tests that the move operator works
TEST_METHOD(Move_Operator)
{
Vector3d a(1, 2, 3);
Vector3d b = std::move(a);
Assert::AreEqual(b.x, 1.0);
Assert::AreEqual(b.y, 2.0);
Assert::AreEqual(b.z, 3.0);
return;
}
};
}