Eule/Test/Vector4.cpp

825 lines
20 KiB
C++
Raw Normal View History

2021-11-15 11:32:27 +01:00
#include "CppUnitTest.h"
#include "../Eule/Vector4.h"
#include "../Eule/Matrix4x4.h"
#include "../Eule/Math.h"
#include "../_TestingUtilities/HandyMacros.h"
#include <random>
#include <sstream>
using namespace Microsoft::VisualStudio::CppUnitTestFramework;
using namespace Eule;
namespace Vectors
{
TEST_CLASS(_Vector4)
{
private:
std::mt19937 rng;
public:
// Constructor
_Vector4()
{
rng = std::mt19937((std::random_device())());
return;
}
// Tests if all values are 0 after initialization via default constructor
TEST_METHOD(New_Vector_All_0)
{
Vector4d v4;
Assert::AreEqual(0.0, v4.x);
Assert::AreEqual(0.0, v4.y);
Assert::AreEqual(0.0, v4.z);
Assert::AreEqual(0.0, v4.w);
return;
}
// Tests if values can be set via the constructor
TEST_METHOD(Can_Set_Values_Constructor)
{
Vector4d v4(69, 32, 16, 10);
Assert::AreEqual(69.0, v4.x);
Assert::AreEqual(32.0, v4.y);
Assert::AreEqual(16.0, v4.z);
Assert::AreEqual(10.0, v4.w);
return;
}
// Tests if values can be set via letters
TEST_METHOD(Can_Set_Values_Letters)
{
Vector4d v4;
v4.x = 69;
v4.y = 32;
v4.z = 16;
v4.w = 10;
Assert::AreEqual(69.0, v4.x);
Assert::AreEqual(32.0, v4.y);
Assert::AreEqual(16.0, v4.z);
Assert::AreEqual(10.0, v4.w);
return;
}
// Tests if values can be set via array descriptors
TEST_METHOD(Can_Set_Values_ArrayDescriptor)
{
Vector4d v4;
v4[0] = 69;
v4[1] = 32;
v4[2] = 16;
v4[3] = 10;
Assert::AreEqual(69.0, v4.x);
Assert::AreEqual(32.0, v4.y);
Assert::AreEqual(16.0, v4.z);
Assert::AreEqual(10.0, v4.w);
return;
}
// Tests if values can be set via an initializer list
TEST_METHOD(Can_Set_Values_InitializerList)
{
Vector4d v4 = { 69, 32, 16, 10 };
Assert::AreEqual(69.0, v4.x);
Assert::AreEqual(32.0, v4.y);
Assert::AreEqual(16.0, v4.z);
Assert::AreEqual(10.0, v4.w);
return;
}
// Tests for vectors copied via the copy constructor to have the same values
TEST_METHOD(Copy_Constructor_Same_Values)
{
Vector4d a(69, 32, 16, 10);
Vector4d b(a);
Assert::AreEqual(69.0, b.x);
Assert::AreEqual(32.0, b.y);
Assert::AreEqual(16.0, b.z);
Assert::AreEqual(10.0, b.w);
return;
}
// Tests for vectors copied via the equals operator to have the same values
TEST_METHOD(Operator_Equals_Same_Values)
{
Vector4d a(69, 32, 16, 10);
Vector4d b = a;
Assert::AreEqual(69.0, b.x);
Assert::AreEqual(32.0, b.y);
Assert::AreEqual(16.0, b.z);
Assert::AreEqual(10.0, b.w);
return;
}
// Tests for vectors copied via the copy constructor to be modifyable without modifying the original object
TEST_METHOD(Copy_Constructor_Independent)
{
Vector4d a(69, 32, 16, 10);
Vector4d b(a);
b.x = 169;
b.y = 132;
b.z = 116;
b.w = 110;
Assert::AreEqual(69.0, a.x);
Assert::AreEqual(32.0, a.y);
Assert::AreEqual(16.0, a.z);
Assert::AreEqual(10.0, a.w);
Assert::AreEqual(169.0, b.x);
Assert::AreEqual(132.0, b.y);
Assert::AreEqual(116.0, b.z);
Assert::AreEqual(110.0, b.w);
return;
}
// Tests for vectors copied via the equals operator to be modifyable without modifying the original object
TEST_METHOD(Operator_Equals_Independent)
{
Vector4d a(69, 32, 16, 10);
Vector4d b = a;
b.x = 169;
b.y = 132;
b.z = 116;
b.w = 110;
Assert::AreEqual(69.0, a.x);
Assert::AreEqual(32.0, a.y);
Assert::AreEqual(16.0, a.z);
Assert::AreEqual(10.0, a.w);
Assert::AreEqual(169.0, b.x);
Assert::AreEqual(132.0, b.y);
Assert::AreEqual(116.0, b.z);
Assert::AreEqual(110.0, b.w);
return;
}
// Tests the SqrMagnitude method to work as expected with random numbers
TEST_METHOD(SqrMagnitude)
{
// Test 1000 times
for (std::size_t i = 0; i < 1000; i++)
{
double x = LARGE_RAND_DOUBLE;
double y = LARGE_RAND_DOUBLE;
double z = LARGE_RAND_DOUBLE;
double w = LARGE_RAND_DOUBLE;
double expected = x*x + y*y + z*z + w*w;
Assert::AreEqual(expected, Vector4d(x, y, z, w).SqrMagnitude());
}
return;
}
// Tests for the length of the vector (0,0,0,0) being 0
TEST_METHOD(Magnitude_Is_0_On_Vec0)
{
Assert::AreEqual(0.0, Vector4d(0, 0, 0, 0).Magnitude());
return;
}
// Tests for a vector of a known length to actually return that
TEST_METHOD(Magnitude_One_Axis_X)
{
// Test 1000 times
for (std::size_t i = 0; i < 1000; i++)
{
double x = LARGE_RAND_DOUBLE;
Vector4d vec(x, 0, 0, 0);
Assert::AreEqual(abs(x), vec.Magnitude());
}
return;
}
// Tests for a vector of a known length to actually return that
TEST_METHOD(Magnitude_One_Axis_Y)
{
// Test 1000 times
for (std::size_t i = 0; i < 1000; i++)
{
double y = LARGE_RAND_DOUBLE;
Vector4d vec(0, y, 0, 0);
Assert::AreEqual(abs(y), vec.Magnitude());
}
return;
}
// Tests for a vector of a known length to actually return that
TEST_METHOD(Magnitude_One_Axis_Z)
{
// Test 1000 times
for (std::size_t i = 0; i < 1000; i++)
{
double z = LARGE_RAND_DOUBLE;
Vector4d vec(0, 0, z, 0);
Assert::AreEqual(abs(z), vec.Magnitude());
}
return;
}
// Tests for a vector of a known length to actually return that
TEST_METHOD(Magnitude_One_Axis_W)
{
// Test 1000 times
for (std::size_t i = 0; i < 1000; i++)
{
double w = LARGE_RAND_DOUBLE;
Vector4d vec(0, 0, 0, w);
Assert::AreEqual(abs(w), vec.Magnitude());
}
return;
}
// Tests for a known result
TEST_METHOD(Magnitude)
{
// Ya'll got more of 'dem digits?
Assert::AreEqual(78.5746530377322045524124405346810817718505859375, Vector4d(-23.76, 15.82, 66.75, 30.06).Magnitude());
return;
}
// Tests for expected lerp result 0.00
TEST_METHOD(Lerp_000)
{
Vector4d a(100, 1000, 10, -200);
Vector4d b(200, 4000, 100, 200);
Vector4d res = a.Lerp(b, 0.00);
std::wstringstream wss;
wss << res;
Assert::IsTrue(a == res, wss.str().c_str());
return;
}
// Tests for expected lerp result 0.25
TEST_METHOD(Lerp_025)
{
Vector4d a(100, 1000, 10, -200);
Vector4d b(200, 4000, 100, 200);
Vector4d res = a.Lerp(b, 0.25);
std::wstringstream wss;
wss << res;
Assert::IsTrue(Vector4d(125, 1750, 32.5, -100) == res, wss.str().c_str());
return;
}
// Tests for expected lerp result 0.50
TEST_METHOD(Lerp_050)
{
Vector4d a(100, 1000, 10, -200);
Vector4d b(200, 4000, 100, 200);
Vector4d res = a.Lerp(b, 0.50);
std::wstringstream wss;
wss << res;
Assert::IsTrue(Vector4d(150, 2500, 55, 0) == res, wss.str().c_str());
return;
}
// Tests for expected lerp result 0.75
TEST_METHOD(Lerp_075)
{
Vector4d a(100, 1000, 10, -200);
Vector4d b(200, 4000, 100, 200);
Vector4d res = a.Lerp(b, 0.75);
std::wstringstream wss;
wss << res;
Assert::IsTrue(Vector4d(175, 3250, 77.5, 100) == res, wss.str().c_str());
return;
}
// Tests for expected lerp result 1.00
TEST_METHOD(Lerp_100)
{
Vector4d a(100, 1000, 10, -200);
Vector4d b(200, 4000, 100, 200);
Vector4d res = a.Lerp(b, 1.00);
std::wstringstream wss;
wss << res;
Assert::IsTrue(b == res, wss.str().c_str());
return;
}
// Tests lerpself
TEST_METHOD(LerpSelf)
{
Vector4d a(100, 1000, 10, -200);
Vector4d b(200, 4000, 100, 200);
a.LerpSelf(b, 0.75);
std::wstringstream wss;
wss << a;
Assert::IsTrue(Vector4d(175, 3250, 77.5, 100) == a, wss.str().c_str());
return;
}
// Tests if an input vector of length 0 is handled correctly by the normalize method
TEST_METHOD(Normalize_Length_Before_Is_0)
{
Vector4d vec(0, 0, 0, 0);
vec.NormalizeSelf();
Assert::AreEqual(0.0, vec.Magnitude());
return;
}
// Tests for any normalized vector to be of length 1
TEST_METHOD(Normalize_Length_Is_1)
{
// Test 1000 times
for (std::size_t i = 0; i < 1000; i++)
{
double x = LARGE_RAND_DOUBLE;
double y = LARGE_RAND_DOUBLE;
double z = LARGE_RAND_DOUBLE;
double w = LARGE_RAND_DOUBLE;
Vector4d vec(x, y, z, w);
// Prevent a vector of length 0 going in
if (vec.SqrMagnitude() == 0)
vec.x++;
std::wstringstream wss;
wss << vec;
Assert::IsTrue(Math::Similar(vec.Normalize().Magnitude(), 1.0), wss.str().c_str()); // Account for floating point inaccuracy
}
return;
}
// Tests the normalize method with known values
TEST_METHOD(Normalize_Oracle)
{
// Setup
Vector4d v(3.2, -5.3, 9.88, 69.420);
// Exercise
v.NormalizeSelf();
// Verify
Vector4d expected(0.0454594951, -0.07529228877, 0.14035619114, 0.98618692201);
Assert::IsTrue(v.Similar(expected));
}
// Kinda dumb method, but ok lol
// DON'T NORMALIZE INT-VECTORS WHAT IS WRONG WITH YOU
TEST_METHOD(Normalized_Int_Vector_Is_0)
{
// Test 1000 times
for (std::size_t i = 0; i < 1000; i++)
{
int x = LARGE_RAND_INT;
int y = LARGE_RAND_INT;
int z = LARGE_RAND_INT;
int w = LARGE_RAND_INT;
Vector4i vec(x, y, z, w);
vec.NormalizeSelf();
std::wstringstream wss;
wss << vec;
Assert::AreEqual(0.0, vec.Magnitude(), wss.str().c_str());
}
}
// Tests that NormalizeSelf() results in the same as Normalize()
TEST_METHOD(NormalizeSelf_IsSameAs_Normalize)
{
// Run test 1000 times
for (std::size_t i = 0; i < 1000; i++)
{
Vector4d vec(LARGE_RAND_DOUBLE, LARGE_RAND_DOUBLE, LARGE_RAND_DOUBLE, LARGE_RAND_DOUBLE);
Vector4d nVec = vec.Normalize();
vec.NormalizeSelf();
Assert::IsTrue(nVec == vec);
}
return;
}
// Tests for the VectorScale() method to work
TEST_METHOD(VectorScale)
{
// Run test 1000 times
for (std::size_t i = 0; i < 1000; i++)
{
const double ax = LARGE_RAND_DOUBLE;
const double ay = LARGE_RAND_DOUBLE;
const double az = LARGE_RAND_DOUBLE;
const double aw = LARGE_RAND_DOUBLE;
const double bx = LARGE_RAND_DOUBLE;
const double by = LARGE_RAND_DOUBLE;
const double bz = LARGE_RAND_DOUBLE;
const double bw = LARGE_RAND_DOUBLE;
Vector4d a(ax, ay, az, aw);
Vector4d b(bx, by, bz, bw);
Vector4d target(
ax * bx,
ay * by,
az * bz,
aw * bw
);
Assert::IsTrue(a.VectorScale(b) == target);
}
return;
}
// Tests for operator- (unary) to work
TEST_METHOD(Operator_Unary_Negative)
{
Vector4d v(29, -5, 35, -69);
Assert::IsTrue(Vector4d(-29, 5, -35, 69) == -v);
return;
}
// Tests for operator+ to work as expected
TEST_METHOD(Operator_Add)
{
// Test 1000 times
for (std::size_t i = 0; i < 1000; i++)
{
double ax = LARGE_RAND_DOUBLE;
double ay = LARGE_RAND_DOUBLE;
double az = LARGE_RAND_DOUBLE;
double aw = LARGE_RAND_DOUBLE;
double bx = LARGE_RAND_DOUBLE;
double by = LARGE_RAND_DOUBLE;
double bz = LARGE_RAND_DOUBLE;
double bw = LARGE_RAND_DOUBLE;
Vector4d a(ax, ay, az, aw);
Vector4d b(bx, by, bz, bw);
Assert::IsTrue(Vector4d(ax + bx, ay + by, az + bz, aw + bw) == a + b);
}
return;
}
// Tests for operator+= to work as expected
TEST_METHOD(Operator_Add_Equals)
{
// Test 1000 times
for (std::size_t i = 0; i < 1000; i++)
{
double ax = LARGE_RAND_DOUBLE;
double ay = LARGE_RAND_DOUBLE;
double az = LARGE_RAND_DOUBLE;
double aw = LARGE_RAND_DOUBLE;
double bx = LARGE_RAND_DOUBLE;
double by = LARGE_RAND_DOUBLE;
double bz = LARGE_RAND_DOUBLE;
double bw = LARGE_RAND_DOUBLE;
Vector4d a(ax, ay, az, aw);
a += Vector4d(bx, by, bz, bw);
Assert::IsTrue(Vector4d(ax + bx, ay + by, az + bz, aw + bw) == a);
}
return;
}
// Tests for operator- to work as expected
TEST_METHOD(Operator_Sub)
{
// Test 1000 times
for (std::size_t i = 0; i < 1000; i++)
{
double ax = LARGE_RAND_DOUBLE;
double ay = LARGE_RAND_DOUBLE;
double az = LARGE_RAND_DOUBLE;
double aw = LARGE_RAND_DOUBLE;
double bx = LARGE_RAND_DOUBLE;
double by = LARGE_RAND_DOUBLE;
double bz = LARGE_RAND_DOUBLE;
double bw = LARGE_RAND_DOUBLE;
Vector4d a(ax, ay, az, aw);
Vector4d b(bx, by, bz, bw);
Assert::IsTrue(Vector4d(ax - bx, ay - by, az - bz, aw - bw) == a - b);
}
return;
}
// Tests for operator-= to work as expected
TEST_METHOD(Operator_Sub_Equals)
{
// Test 1000 times
for (std::size_t i = 0; i < 1000; i++)
{
double ax = LARGE_RAND_DOUBLE;
double ay = LARGE_RAND_DOUBLE;
double az = LARGE_RAND_DOUBLE;
double aw = LARGE_RAND_DOUBLE;
double bx = LARGE_RAND_DOUBLE;
double by = LARGE_RAND_DOUBLE;
double bz = LARGE_RAND_DOUBLE;
double bw = LARGE_RAND_DOUBLE;
Vector4d a(ax, ay, az, aw);
a -= Vector4d(bx, by, bz, bw);
Assert::IsTrue(Vector4d(ax - bx, ay - by, az - bz, aw - bw) == a);
}
return;
}
// Tests for operator* to work as expected
TEST_METHOD(Operator_Mult)
{
// Test 1000 times
for (std::size_t i = 0; i < 1000; i++)
{
double x = LARGE_RAND_DOUBLE;
double y = LARGE_RAND_DOUBLE;
double z = LARGE_RAND_DOUBLE;
double w = LARGE_RAND_DOUBLE;
double scalar = LARGE_RAND_DOUBLE;
Vector4d a(x, y, z, w);
Assert::IsTrue(Vector4d(x * scalar, y * scalar, z * scalar, w * scalar) == a * scalar);
}
return;
}
// Tests for operator*= to work as expected
TEST_METHOD(Operator_Mult_Equals)
{
// Test 1000 times
for (std::size_t i = 0; i < 1000; i++)
{
double x = LARGE_RAND_DOUBLE;
double y = LARGE_RAND_DOUBLE;
double z = LARGE_RAND_DOUBLE;
double w = LARGE_RAND_DOUBLE;
double scalar = LARGE_RAND_DOUBLE;
Vector4d a(x, y, z, w);
a *= scalar;
Assert::IsTrue(Vector4d(x * scalar, y * scalar, z * scalar, w * scalar) == a);
}
return;
}
// Tests for operator/ to work as expected
TEST_METHOD(Operator_Div)
{
// Test 1000 times
for (std::size_t i = 0; i < 1000; i++)
{
double x = LARGE_RAND_DOUBLE;
double y = LARGE_RAND_DOUBLE;
double z = LARGE_RAND_DOUBLE;
double w = LARGE_RAND_DOUBLE;
double scalar = LARGE_RAND_DOUBLE;
Vector4d a(x, y, z, w);
Assert::IsTrue(Vector4d(x / scalar, y / scalar, z / scalar, w / scalar) == a / scalar);
}
return;
}
// Tests for operator/= to work as expected
TEST_METHOD(Operator_Div_Equals)
{
// Test 1000 times
for (std::size_t i = 0; i < 1000; i++)
{
double x = LARGE_RAND_DOUBLE;
double y = LARGE_RAND_DOUBLE;
double z = LARGE_RAND_DOUBLE;
double w = LARGE_RAND_DOUBLE;
double scalar = LARGE_RAND_DOUBLE;
Vector4d a(x, y, z, w);
a /= scalar;
Assert::IsTrue(Vector4d(x / scalar, y / scalar, z / scalar, w / scalar) == a);
}
return;
}
// Tests for operator== to work as expected
TEST_METHOD(Operator_Equals)
{
// Test 1000 times
for (std::size_t i = 0; i < 1000; i++)
{
double ax = LARGE_RAND_DOUBLE;
double ay = LARGE_RAND_DOUBLE;
double az = LARGE_RAND_DOUBLE;
double aw = LARGE_RAND_DOUBLE;
double bx = LARGE_RAND_DOUBLE;
double by = LARGE_RAND_DOUBLE;
double bz = LARGE_RAND_DOUBLE;
double bw = LARGE_RAND_DOUBLE;
Vector4d a(ax, ay, az, aw);
Vector4d b(bx, by, bz, bw);
Assert::IsTrue(
((ax == bx) && (ay == by) && (az == bz) && (aw == bw)) ==
(a == b)
);
}
return;
}
// Tests for operator!= to work as expected
TEST_METHOD(Operator_Not_Equals)
{
// Test 1000 times
for (std::size_t i = 0; i < 1000; i++)
{
double ax = LARGE_RAND_DOUBLE;
double ay = LARGE_RAND_DOUBLE;
double az = LARGE_RAND_DOUBLE;
double aw = LARGE_RAND_DOUBLE;
double bx = LARGE_RAND_DOUBLE;
double by = LARGE_RAND_DOUBLE;
double bz = LARGE_RAND_DOUBLE;
double bw = LARGE_RAND_DOUBLE;
Vector4d a(ax, ay, az, aw);
Vector4d b(bx, by, bz, bw);
Assert::IsTrue(
((ax != bx) || (ay != by) || (az != bz) || (aw != bw)) ==
(a != b)
);
}
return;
}
// Tests matrix multiplication with the multiplication operator (*) with a known result
TEST_METHOD(MatrixMult)
{
Vector4d vec(117, 12, -36, 500);
Matrix4x4 mat;
mat[0] = { -43.7, 83, 96, 86 };
mat[1] = { 12, 34.3, 43, -47 };
mat[2] = { 36, 67, 48.9, -32 };
mat[3] = { -69, 47, 21, 89.01 };
vec = vec * mat;
Assert::IsTrue(Vector4d(35427.1, -23232.4, -12744.4, 36240) == vec);
return;
}
// Tests matrix multiplication with the multiplication equals operator (*=) with a known result
TEST_METHOD(MatrixMult_Equals)
{
Vector4d vec(117, 12, -36, 500);
Matrix4x4 mat;
mat[0] = { -43.7, 83, 96, 86 };
mat[1] = { 12, 34.3, 43, -47 };
mat[2] = { 36, 67, 48.9, -32 };
mat[3] = { -69, 47, 21, 89.01 };
vec *= mat;
Assert::IsTrue(Vector4d(35427.1, -23232.4, -12744.4, 36240) == vec);
return;
}
// Tests matrix multiplication with the multiplication operator (*) with a known result, but with an int-vector
TEST_METHOD(MatrixMult_Int)
{
Vector4i vec(112, -420, 80085, 1);
Matrix4x4 mat;
mat[0] = { 12, 83, 96, 86 };
mat[1] = { 12, -57, 43, -47 };
mat[2] = { 36, 67, 61, -32 };
mat[3] = { -69, 47, 21, 99 };
vec = vec * mat;
Assert::IsTrue(Vector4i(7654730, 3468892, 4861045, 1654416) == vec);
return;
}
// Tests matrix multiplication with the multiplication equals operator (*=) with a known result, but with an int - vector
TEST_METHOD(MatrixMult_Equals_Int)
{
Vector4i vec(112, -420, 80085, 1);
Matrix4x4 mat;
mat[0] = { 12, 83, 96, 86 };
mat[1] = { 12, -57, 43, -47 };
mat[2] = { 36, 67, 61, -32 };
mat[3] = { -69, 47, 21, 99 };
vec *= mat;
Assert::IsTrue(Vector4i(7654730, 3468892, 4861045, 1654416) == vec);
return;
}
// Tests loose comparison via Vector4d::Similar -> true
TEST_METHOD(Loose_Comparison_True_Vector4d)
{
Assert::IsTrue(
Vector4d(0.00000000000000000000001, -6.6666666666666666666666666666, 9.9999999999999999999999999999, -3.3333333333333333333333333333333333333).Similar(
Vector4d(0, -6.666666667, 10, -3.33333333333333)
));
return;
}
// Tests loose comparison via Vector4d::Similar -> false
TEST_METHOD(Loose_Comparison_False_Vector4d)
{
Assert::IsFalse(
Vector4d(0.00000000000000000000001, -6.6666666666666666666666666666, 9.9999999999999999999999999999, -3.3333333333333333333333333333333333333).Similar(
Vector4d(0.1, -6.7, 10.1, -3.333)
));
return;
}
// Tests that the move constructor works
TEST_METHOD(Move_Constructor)
{
Vector4d a(1, 2, 3, 4);
Vector4d b(std::move(a));
Assert::AreEqual(b.x, 1.0);
Assert::AreEqual(b.y, 2.0);
Assert::AreEqual(b.z, 3.0);
Assert::AreEqual(b.w, 4.0);
return;
}
// Tests that the move operator works
TEST_METHOD(Move_Operator)
{
Vector4d a(1, 2, 3, 4);
Vector4d b = std::move(a);
Assert::AreEqual(b.x, 1.0);
Assert::AreEqual(b.y, 2.0);
Assert::AreEqual(b.z, 3.0);
Assert::AreEqual(b.w, 4.0);
return;
}
};
}