Eule/INCLUDE/Eule.h

838 lines
24 KiB
C
Raw Normal View History

#pragma once
/*** ../Eule/Vector2.h ***/
#include <cstdlib>
#include <sstream>
namespace Eule
{
template <typename T> class Vector3;
template <typename T> class Vector4;
/** Representation of a 2d vector.
* Contains a lot of utility methods.
*/
template <typename T>
class Vector2
{
public:
Vector2() : x{ 0 }, y{ 0 } {}
Vector2(T _x, T _y) : x{ _x }, y{ _y } {}
Vector2(const Vector2<T>& other) = default;
Vector2(Vector2<T>&& other) noexcept = default;
//! Will compute the dot product to another Vector2
double DotProduct(const Vector2<T>& other) const;
//! Will compute the cross product to another Vector2
double CrossProduct(const Vector2<T>& other) const;
//! Will compute the square magnitude
double SqrMagnitude() const;
//! Will compute the magnitude
double Magnitude() const;
//! Will return the normalization of this vector
[[nodiscard]] Vector2<double> Normalize() const;
//! Will normalize this vector
void NormalizeSelf();
//! Will scale self.n by scalar.n
Vector2<T> VectorScale(const Vector2<T>& scalar) const;
//! Will lerp itself towards other by t
void LerpSelf(const Vector2<T>& other, double t);
//! Will return a lerp result between this and another vector
[[nodiscard]] Vector2<double> Lerp(const Vector2<T>& other, double t) const;
//! Will compare if two vectors are similar to a certain epsilon value
[[nodiscard]] bool Similar(const Vector2<T>& other, double epsilon = 0.00001) const;
//! Will convert this vector to a Vector2i
[[nodiscard]] Vector2<int> ToInt() const;
//! Will convert this vector to a Vector2d
[[nodiscard]] Vector2<double> ToDouble() const;
T& operator[](std::size_t idx);
const T& operator[](std::size_t idx) const;
Vector2<T> operator+(const Vector2<T>& other) const;
void operator+=(const Vector2<T>& other);
Vector2<T> operator-(const Vector2<T>& other) const;
void operator-=(const Vector2<T>& other);
Vector2<T> operator*(const T scale) const;
void operator*=(const T scale);
Vector2<T> operator/(const T scale) const;
void operator/=(const T scale);
Vector2<T> operator-() const;
operator Vector3<T>() const; //! Conversion method
operator Vector4<T>() const; //! Conversion method
void operator=(const Vector2<T>& other);
void operator=(Vector2<T>&& other) noexcept;
bool operator==(const Vector2<T>& other) const;
bool operator!=(const Vector2<T>& other) const;
friend std::ostream& operator<< (std::ostream& os, const Vector2<T>& v)
{
return os << "[x: " << v.x << " y: " << v.y << "]";
}
friend std::wostream& operator<< (std::wostream& os, const Vector2<T>& v)
{
return os << L"[x: " << v.x << L" y: " << v.y << L"]";
}
T x;
T y;
// Some handy predefines
static const Vector2<double> up;
static const Vector2<double> down;
static const Vector2<double> right;
static const Vector2<double> left;
static const Vector2<double> one;
static const Vector2<double> zero;
};
typedef Vector2<int> Vector2i;
typedef Vector2<double> Vector2d;
}
/*** ../Eule/Random.h ***/
#include <random>
namespace Eule
{
/** Extensive random number generator
*/
class Random
{
public:
//! Will return a random double between `0` and `1`
static double RandomFloat();
//! Will return a random unsigned integer.
static unsigned int RandomUint();
//! Will return a random integer
static unsigned int RandomInt();
//! Will return a random double within a range
//! These bounds are INCLUSIVE!
static double RandomRange(const double min, const double max);
//! Will return a random integer within a range. This is faster than `(int)RandomRange(x,y)`
//! These bounds are INCLUSIVE!
static int RandomIntRange(const int max, const int min);
//! Will 'roll' a dice, returning `true` \f$100 * chance\f$ percent of the time.
static bool RandomChance(const double chance);
private:
//! Will initialize the random number generator
static void InitRng();
static std::mt19937 rng;
static bool isRngInitialized;
// No instanciation! >:(
Random();
};
}
/*** ../Eule/gcccompat.h ***/
/*
* Some intrinsic functions such as _mm_sincos_pd are not available on g++ by default (requires some specific library).
* So let's just "re"define them manually if we're on g++.
* This way the code still works, even with the other intrinsics enabled.
*/
#if (__GNUC__ && __cplusplus)
#include <immintrin.h>
#include <math.h>
inline __m256d _mm256_sincos_pd(__m256d* __cos, __m256d __vec)
{
double vec[4];
_mm256_storeu_pd(vec, __vec);
// Manually calculate cosines
*__cos = _mm256_set_pd(
cos(vec[3]),
cos(vec[2]),
cos(vec[1]),
cos(vec[0])
);
// Manually calculate sines
return _mm256_set_pd(
sin(vec[3]),
sin(vec[2]),
sin(vec[1]),
sin(vec[0])
);
}
#endif
/*** ../Eule/Math.h ***/
#include <stdexcept>
namespace Eule
{
/** Math utility class containing basic functions.
*/
class Math
{
public:
//! Will return the bigger of two values
[[nodiscard]] static constexpr double Max(const double a, const double b);
//! Will return the smaller of two values
[[nodiscard]] static constexpr double Min(const double a, const double b);
//! Will return `v`, but at least `min`, and at most `max`
[[nodiscard]] static constexpr double Clamp(const double v, const double min, const double max);
//! Will return the linear interpolation between `a` and `b` by `t`
[[nodiscard]] static constexpr double Lerp(double a, double b, double t);
//! Will return the absolute value of `a`
[[nodiscard]] static constexpr double Abs(const double a);
//! Compares two double values with a given accuracy
[[nodiscard]] static constexpr bool Similar(const double a, const double b, const double epsilon = 0.00001);
//! Will compute the actual modulo of a fraction. The % operator returns bs for n<0.
//! May throw division-by-zero std::logic_error
[[nodiscard]] static int Mod(const int numerator, const int denominator);
//! Kind of like \f$sin(counter)\f$, but it oscillates over \f$[a,b]\f$ instead of \f$[-1,1]\f$, by a given speed.
//! Given that \f$speed = 1\f$, the result will always be `a` if `counter` is even, and `b` if `counter` is uneven.
//! If `counter` is a rational, the result will oscillate between `a` and `b`, like `sin()` does.
//! If you increase `speed`, the oscillation frequency will increase. Meaning \f$speed = 2\f$ would result in \f$counter=0.5\f$ returning `b`.
static double Oscillate(const double a, const double b, const double counter, const double speed);
private:
// No instanciation! >:(
Math();
};
/* These are just the inline methods. They have to lie in the header file. */
/* The more sophisticated methods are in the .cpp */
constexpr inline double Math::Max(double a, double b)
{
return (a > b) ? a : b;
}
constexpr inline double Math::Min(double a, double b)
{
return (a < b) ? a : b;
}
constexpr inline double Math::Clamp(double v, double min, double max)
{
return Max(Min(v, max), min);
}
constexpr inline double Math::Lerp(double a, double b, double t)
{
const double it = 1.0 - t;
return (a * it) + (b * t);
}
constexpr inline double Math::Abs(const double a)
{
return (a > 0.0) ? a : -a;
}
constexpr inline bool Math::Similar(const double a, const double b, const double epsilon)
{
return Abs(a - b) <= epsilon;
}
}
/*** ../Eule/Matrix4x4.h ***/
#include <cstring>
#include <array>
#include <ostream>
namespace Eule
{
template <class T>
class Vector3;
typedef Vector3<double> Vector3d;
/** A matrix 4x4 class representing a 3d transformation.
* This matrix consists of a 3x3 matrix containing scaling and rotation information, and a vector (d,h,l)
* representing the translation.
*
* ```
* myMatrix[y][x] = 3
*
* X ==============>
* Y
* | # # # # # # # # # # #
* | # a b c d #
* | # #
* | # e f g h #
* | # #
* V # i j k l #
* # #
* # m n o p #
* # # # # # # # # # # #
*
* ```
*
* Note: This class can also be used to compute regular 4x4 multiplications. Use Multiply4x4() for that.
*/
class Matrix4x4
{
public:
Matrix4x4();
Matrix4x4(const Matrix4x4& other);
Matrix4x4(Matrix4x4&& other) noexcept;
//! Array holding the matrices values
std::array<std::array<double, 4>, 4> v;
Matrix4x4 operator*(const Matrix4x4& other) const;
void operator*=(const Matrix4x4& other);
Matrix4x4 operator/(const Matrix4x4& other) const;
void operator/=(const Matrix4x4& other);
//! Cellwise scaling
Matrix4x4 operator*(const double scalar) const;
//! Cellwise scaling
void operator*=(const double scalar);
//! Cellwise division
Matrix4x4 operator/(const double denominator) const;
//! Cellwise division
void operator/=(const double denominator);
//! Cellwise addition
Matrix4x4 operator+(const Matrix4x4& other) const;
//! Cellwise addition
void operator+=(const Matrix4x4& other);
//! Cellwise subtraction
Matrix4x4 operator-(const Matrix4x4& other) const;
//! Cellwise subtraction
void operator-=(const Matrix4x4& other);
std::array<double, 4>& operator[](std::size_t y);
const std::array<double, 4>& operator[](std::size_t y) const;
void operator=(const Matrix4x4& other);
void operator=(Matrix4x4&& other) noexcept;
bool operator==(const Matrix4x4& other);
bool operator==(const Matrix4x4& other) const;
bool operator!=(const Matrix4x4& other);
bool operator!=(const Matrix4x4& other) const;
//! Will return d,h,l as a Vector3d(x,y,z)
const Vector3d GetTranslationComponent() const;
//! Will set d,h,l from a Vector3d(x,y,z)
void SetTranslationComponent(const Vector3d& trans);
//! Will return this Matrix4x4 with d,h,l being set to 0
Matrix4x4 DropTranslationComponents() const;
//! Will return the 3x3 transpose of this matrix
Matrix4x4 Transpose3x3() const;
//! Will return the 4x4 transpose of this matrix
Matrix4x4 Transpose4x4() const;
//! Will return the Matrix4x4 of an actual 4x4 multiplication. operator* only does a 3x3
Matrix4x4 Multiply4x4(const Matrix4x4& o) const;
//! Will return the cofactors of this matrix, by dimension n
Matrix4x4 GetCofactors(std::size_t p, std::size_t q, std::size_t n) const;
//! Will return the determinant, by dimension n
double Determinant(std::size_t n) const;
//! Will return the adjoint of this matrix, by dimension n
Matrix4x4 Adjoint(std::size_t n) const;
//! Will return the 3x3-inverse of this matrix.
//! Meaning, the 3x3 component will be inverted, and the translation component will be negated
Matrix4x4 Inverse3x3() const;
//! Will return the full 4x4-inverse of this matrix
Matrix4x4 Inverse4x4() const;
//! Will check if the 3x3-component is inversible
bool IsInversible3x3() const;
//! Will check if the entire matrix is inversible
bool IsInversible4x4() const;
//! Will compare if two matrices are similar to a certain epsilon value
bool Similar(const Matrix4x4& other, double epsilon = 0.00001) const;
friend std::ostream& operator<< (std::ostream& os, const Matrix4x4& m);
friend std::wostream& operator<< (std::wostream& os, const Matrix4x4& m);
// Shorthands
double& a = v[0][0];
double& b = v[0][1];
double& c = v[0][2];
double& d = v[0][3];
double& e = v[1][0];
double& f = v[1][1];
double& g = v[1][2];
double& h = v[1][3];
double& i = v[2][0];
double& j = v[2][1];
double& k = v[2][2];
double& l = v[2][3];
double& m = v[3][0];
double& n = v[3][1];
double& o = v[3][2];
double& p = v[3][3];
};
}
/*** ../Eule/Vector4.h ***/
#include <cstdlib>
#include <iomanip>
#include <ostream>
#include <sstream>
namespace Eule
{
template <typename T> class Vector2;
template <typename T> class Vector3;
/** Representation of a 4d vector.
* Contains a lot of utility methods.
*/
template <typename T>
class Vector4
{
public:
Vector4() : x{ 0 }, y{ 0 }, z{ 0 }, w{ 0 } {}
Vector4(T _x, T _y, T _z, T _w) : x{ _x }, y{ _y }, z{ _z }, w{ _w } {}
Vector4(const Vector4<T>& other) = default;
Vector4(Vector4<T>&& other) noexcept = default;
//! Will compute the square magnitude
double SqrMagnitude() const;
//! Will compute the magnitude
double Magnitude() const;
//! Will return the normalization of this vector
[[nodiscard]] Vector4<double> Normalize() const;
//! Will normalize this vector
void NormalizeSelf();
//! Will scale self.n by scalar.n
[[nodiscard]] Vector4<T> VectorScale(const Vector4<T>& scalar) const;
//! Will lerp itself towards other by t
void LerpSelf(const Vector4<T>& other, double t);
//! Will return a lerp result between this and another vector
[[nodiscard]] Vector4<double> Lerp(const Vector4<T>& other, double t) const;
//! Will compare if two vectors are similar to a certain epsilon value
[[nodiscard]] bool Similar(const Vector4<T>& other, double epsilon = 0.00001) const;
//! Will convert this vector to a Vector4i
[[nodiscard]] Vector4<int> ToInt() const;
//! Will convert this vector to a Vector4d
[[nodiscard]] Vector4<double> ToDouble() const;
T& operator[](std::size_t idx);
const T& operator[](std::size_t idx) const;
Vector4<T> operator+(const Vector4<T>& other) const;
void operator+=(const Vector4<T>& other);
Vector4<T> operator-(const Vector4<T>& other) const;
void operator-=(const Vector4<T>& other);
Vector4<T> operator*(const T scale) const;
void operator*=(const T scale);
Vector4<T> operator/(const T scale) const;
void operator/=(const T scale);
Vector4<T> operator*(const Matrix4x4& mat) const;
void operator*=(const Matrix4x4& mat);
Vector4<T> operator-() const;
operator Vector2<T>() const; //! Conversion method
operator Vector3<T>() const; //! Conversion method
void operator=(const Vector4<T>& other);
void operator=(Vector4<T>&& other) noexcept;
bool operator==(const Vector4<T>& other) const;
bool operator!=(const Vector4<T>& other) const;
friend std::ostream& operator << (std::ostream& os, const Vector4<T>& v)
{
return os << "[x: " << v.x << " y: " << v.y << " z: " << v.z << " w: " << v.w << "]";
}
friend std::wostream& operator << (std::wostream& os, const Vector4<T>& v)
{
return os << L"[x: " << v.x << L" y: " << v.y << L" z: " << v.z << L" w: " << v.w << L"]";
}
T x;
T y;
T z;
T w;
// Some handy predefines
static const Vector4<double> up;
static const Vector4<double> down;
static const Vector4<double> right;
static const Vector4<double> left;
static const Vector4<double> forward;
static const Vector4<double> backward;
static const Vector4<double> future;
static const Vector4<double> past;
static const Vector4<double> one;
static const Vector4<double> zero;
};
typedef Vector4<int> Vector4i;
typedef Vector4<double> Vector4d;
}
/*** ../Eule/Vector3.h ***/
#include <cstdlib>
#include <iomanip>
#include <ostream>
#include <sstream>
namespace Eule
{
template <typename T> class Vector2;
template <typename T> class Vector4;
/** Representation of a 3d vector.
* Contains a lot of utility methods.
*/
template <typename T>
class Vector3
{
public:
Vector3() : x{ 0 }, y{ 0 }, z{ 0 } {}
Vector3(T _x, T _y, T _z) : x{ _x }, y{ _y }, z{ _z } {}
Vector3(const Vector3<T>& other) = default;
Vector3(Vector3<T>&& other) noexcept = default;
//! Will compute the dot product to another Vector3
double DotProduct(const Vector3<T>& other) const;
//! Will compute the cross product to another Vector3
Vector3<double> CrossProduct(const Vector3<T>& other) const;
//! Will compute the square magnitude
double SqrMagnitude() const;
//! Will compute the magnitude
double Magnitude() const;
//! Will return the normalization of this vector
[[nodiscard]] Vector3<double> Normalize() const;
//! Will normalize this vector
void NormalizeSelf();
//! Will scale self.n by scalar.n
[[nodiscard]] Vector3<T> VectorScale(const Vector3<T>& scalar) const;
//! Will lerp itself towards other by t
void LerpSelf(const Vector3<T>& other, double t);
//! Will return a lerp result between this and another vector
[[nodiscard]] Vector3<double> Lerp(const Vector3<T>& other, double t) const;
//! Will compare if two vectors are similar to a certain epsilon value
[[nodiscard]] bool Similar(const Vector3<T>& other, double epsilon = 0.00001) const;
//! Will convert this vector to a Vector3i
[[nodiscard]] Vector3<int> ToInt() const;
//! Will convert this vector to a Vector3d
[[nodiscard]] Vector3<double> ToDouble() const;
T& operator[](std::size_t idx);
const T& operator[](std::size_t idx) const;
Vector3<T> operator+(const Vector3<T>& other) const;
void operator+=(const Vector3<T>& other);
Vector3<T> operator-(const Vector3<T>& other) const;
void operator-=(const Vector3<T>& other);
Vector3<T> operator*(const T scale) const;
void operator*=(const T scale);
Vector3<T> operator/(const T scale) const;
void operator/=(const T scale);
Vector3<T> operator*(const Matrix4x4& mat) const;
void operator*=(const Matrix4x4& mat);
Vector3<T> operator-() const;
operator Vector2<T>() const; //! Conversion method
operator Vector4<T>() const; //! Conversion method
void operator=(const Vector3<T>& other);
void operator=(Vector3<T>&& other) noexcept;
bool operator==(const Vector3<T>& other) const;
bool operator!=(const Vector3<T>& other) const;
friend std::ostream& operator << (std::ostream& os, const Vector3<T>& v)
{
return os << "[x: " << v.x << " y: " << v.y << " z: " << v.z << "]";
}
friend std::wostream& operator << (std::wostream& os, const Vector3<T>& v)
{
return os << L"[x: " << v.x << L" y: " << v.y << L" z: " << v.z << L"]";
}
T x;
T y;
T z;
// Some handy predefines
static const Vector3<double> up;
static const Vector3<double> down;
static const Vector3<double> right;
static const Vector3<double> left;
static const Vector3<double> forward;
static const Vector3<double> backward;
static const Vector3<double> one;
static const Vector3<double> zero;
};
typedef Vector3<int> Vector3i;
typedef Vector3<double> Vector3d;
}
/*** ../Eule/Quaternion.h ***/
#include <mutex>
namespace Eule
{
/** 3D rotation representation
*/
class Quaternion
{
public:
Quaternion();
//! Constructs by these raw values
explicit Quaternion(const Vector4d values);
//! Copies this existing Quaternion
Quaternion(const Quaternion& q);
//! Creates an quaternion from euler angles
Quaternion(const Vector3d eulerAngles);
~Quaternion();
//! Copies
Quaternion operator= (const Quaternion& q);
//! Multiplies (applies)
Quaternion operator* (const Quaternion& q) const;
//! Divides (applies)
Quaternion operator/ (Quaternion& q) const;
//! Also multiplies
Quaternion& operator*= (const Quaternion& q);
//! Also divides
Quaternion& operator/= (const Quaternion& q);
//! Will transform a 3d point around its origin
Vector3d operator* (const Vector3d& p) const;
bool operator== (const Quaternion& q) const;
bool operator!= (const Quaternion& q) const;
Quaternion Inverse() const;
Quaternion Conjugate() const;
Quaternion UnitQuaternion() const;
//! Will rotate a vector by this quaternion
Vector3d RotateVector(const Vector3d& vec) const;
//! Will return euler angles representing this Quaternion's rotation
Vector3d ToEulerAngles() const;
//! Will return a rotation matrix representing this Quaternions rotation
Matrix4x4 ToRotationMatrix() const;
//! Will return the raw four-dimensional values
Vector4d GetRawValues() const;
//! Will return the value between two Quaternion's as another Quaternion
Quaternion AngleBetween(const Quaternion& other) const;
//! Will set the raw four-dimensional values
void SetRawValues(const Vector4d values);
//! Will return the lerp result between two quaternions
Quaternion Lerp(const Quaternion& other, double t) const;
friend std::ostream& operator<< (std::ostream& os, const Quaternion& q);
friend std::wostream& operator<< (std::wostream& os, const Quaternion& q);
private:
//! Scales
Quaternion operator* (const double scale) const;
Quaternion& operator*= (const double scale);
//! Quaternion values
Vector4d v;
//! Will force a regenartion of the euler and matrix caches on further converter calls
void InvalidateCache();
// Caches for conversions
mutable bool isCacheUpToDate_euler = false;
mutable Vector3d cache_euler;
mutable bool isCacheUpToDate_matrix = false;
mutable Matrix4x4 cache_matrix;
mutable bool isCacheUpToDate_inverse = false;
mutable Vector4d cache_inverse;
// Mutexes for thread-safe caching
mutable std::mutex lock_eulerCache;
mutable std::mutex lock_matrixCache;
mutable std::mutex lock_inverseCache;
};
}
/*** ../Eule/Constants.h ***/
// Pretty sure the compiler will optimize these calculations out...
//! Pi up to 50 decimal places
static constexpr double PI = 3.14159265358979323846264338327950288419716939937510;
//! Pi divided by two
static constexpr double HALF_PI = 1.57079632679489661923132169163975144209858469968755;
//! Factor to convert degrees to radians
static constexpr double Deg2Rad = 0.0174532925199432957692369076848861271344287188854172222222222222;
//! Factor to convert radians to degrees
static constexpr double Rad2Deg = 57.295779513082320876798154814105170332405472466564427711013084788;
/*** ../Eule/Collider.h ***/
namespace Eule
{
/** Abstract class of a collider domain.
* Specializations describe a shape in 3d space, and provide implementations of the methods below,
* for their specific shape. Examples could be a SphereCollider, a BoxCollider, etc...
*/
class Collider
{
public:
//! Tests, if this Collider contains a point
virtual bool Contains(const Vector3d& point) const = 0;
};
}
/*** ../Eule/TrapazoidalPrismCollider.h ***/
#include <array>
namespace Eule
{
/** A collider describing a trapazoidal prism.
* A trapazoidal prism is basically a box, but each vertex can be manipulated individually, altering
* the angles between faces.
* Distorting a 2d face into 3d space will result in undefined behaviour. Each face should stay flat, relative to itself. This shape is based on QUADS!
*/
class TrapazoidalPrismCollider : public Collider
{
public:
TrapazoidalPrismCollider();
TrapazoidalPrismCollider(const TrapazoidalPrismCollider& other) = default;
TrapazoidalPrismCollider(TrapazoidalPrismCollider&& other) noexcept = default;
void operator=(const TrapazoidalPrismCollider& other);
void operator=(TrapazoidalPrismCollider&& other) noexcept;
//! Will return a specific vertex
const Vector3d& GetVertex(std::size_t index) const;
//! Will set the value of a specific vertex
void SetVertex(std::size_t index, const Vector3d value);
//! Tests, if this Collider contains a point
bool Contains(const Vector3d& point) const override;
/* Vertex identifiers */
static constexpr std::size_t BACK = 0;
static constexpr std::size_t FRONT = 4;
static constexpr std::size_t LEFT = 0;
static constexpr std::size_t RIGHT = 2;
static constexpr std::size_t BOTTOM = 0;
static constexpr std::size_t TOP = 1;
private:
enum class FACE_NORMALS : std::size_t;
//! Will calculate the vertex normals from vertices
void GenerateNormalsFromVertices();
//! Returns the dot product of a given point against a specific plane of the bounding box
double FaceDot(FACE_NORMALS face, const Vector3d& point) const;
std::array<Vector3d, 8> vertices;
// Face normals
enum class FACE_NORMALS : std::size_t
{
LEFT = 0,
RIGHT = 1,
FRONT = 2,
BACK = 3,
TOP = 4,
BOTTOM = 5
};
std::array<Vector3d, 6> faceNormals;
};
}